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Information Processing Systems

Model Parameters

Y SRR
* Data-intensive computing
“ " _ _ Traditional HPC
— “Fourth” paradigm of science [J. Gray] strengths
* Modeling & sim
~ Model parameters and generate lots of data Simulation Data
o Where we can do :
— Assumes a-priori you know whatyou are  jnteresting work :
doing Data for Processing
\

 Information processing

— Take lots of data and produce summaries Traditional
commercial
- You may not know what you want strengths

» These disciplines are not mutually incompatible
Observations

Queries, aggregation, data
mining, visualization
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Sources of Data
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— Cligue analysis, epidemic spread
Computer logs

— Hardware failures, software bugs, security

— Predictive analysis, intrusion detection
Geospatial

— GIS, satellite imagery, volunteered data

— Zonal statistics, population modeling
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Significance

* Modeling & sim is heavily invested in Parallel, distributed:
parallel and distributed systems MPI, OpenMP, ...

— More computers — better simulations :

— Modeling & sim is very
heterogeneous, needs complicated

tools (MPI) Workstation:

Most popular programming Matlab, R, Python
i I lin th | 1 ™
e |PS mostly done on smgle machines tool in the world

What do you use to analyze and/or visualize data?

— Data tools emphasize ease-of-use, 1112 rsponses
visualization Fu ™)
®
- IPS applications often homogeneous / e
Tllustrator 4%
Only statisticians - B
 But things are changing like R e
Processing m
- Google, FBI TWItter Pen and Paper m
— More data, more complex, more tools Nothing Jurclook. [

L] 50 100 150 200 250 300 350

FiowingData Poli, September 2010
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Data Singularity

* Once upon a time we were data starved

— Collecting data was/is hard, slow, and analog —

*  Now we have more data than we know what to do
with

— Collecting data is become easyfier}, fast{er}, and
digital

— Sensors, mobile devices, volunteered data

* Data generated at increasing rates

*  We must analyze data at a rate faster than
collection or we will drown

Application Data generated per day

DNA Sequencing (lllumina HiSeq 1TB

machine)

Large Synoptic Survey Telescope 30 TB; 400 Mbps sustained data rate
between Chile and NCSA

Large Hadron Collider 60 TB
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What is Big Data?

10000 g+ .
* Data-related problems that exceed local 1000
capacity _ ;
& o}
— Data becoming available at collection/storage g ]
. . o E E
limits [Shankar] 01
— Single-machine analysis approaching memory P
| | m ItS O'OOJQBO-Jan1985-Jan1990-Jan1995-Jan2OOO-Jan2005-Jan201O-Jan2015-Ja
Year
* “my graph won't fitin memory so | can't 10000
use R” 1000 ® X .
>
— Gapisincreasing Lo x
.y 4] bt
* Traditional data tools need to evolve = ] %
w% KX
— Employ distributed resources 1 y
x
— Push computation to the edge for aggressive 014 % X
filtering
0.01 T T T T
1970 1980 13950 2000 2010
— Enable wider range of data scientists Year
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What is Big Data?

10000 g

1000

100

10

1

Capacity (GB)

0.1

0.01

What will these tools look like?
Where can | get lots of machines?

100+

0.1+

0.01 T T T T
1970 1980 13950 2000 2010
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Cloud Computing

e “"Maybe I'm anidiot, but | have no idea what
anyone is talking about” [L. Ellison]

* [Hardware, platform]-as-a-service

* No contracts, no grants, almost instantly available

* Enable scale-up and ! !
" Capacity -
scale-down el T AT 2
Time g Time >
Small - $0.085 / hr  32-bit 1 1.7GB 160 GB
Large - $0.34/ hr  64-bit 4 7.5GB 850 GB — 2 spindles
XLarge - $0.68/ hr  64-bit 8 15.0 GB 1690 GB — 3 spindles

Options....extra memory, extra CPU, extra disk, ...
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Cloud Computing

3 100 S
280 AMD e
« “Maybe I'm an idiot, but | have no idea what T 60N ntel —m—
anyone is talking about” [L. Ellison 2 ~
: ),

* [Hardware, platform]-as-a-service

Not so great for wc—Y0 2 8 10 12 14 16
* No contracts, no grants, almost instantly available Number of nodes
* Enable scale-up and | (
" Capacity -
scale-down -3 2
- Opaque interconnect = Mema”d
Time g Time >
Small - $0.085 /hr  32-bit 1 1.7GB 160 GB
Large - $0.34/ hr  64-bit 4 7.5GB 850 GB — 2 spindles
XLarge - $0.68/ hr  64-bit 8 15.0 GB 1690 GB — 3 spindles

Options....extra memory, extra CPU, extra disk, ...
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Cloud Computing
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Can Clouds help us with the Big Data problem?

° = E— . . . ' |ty
V \/ \ V \/ \Demand
Time g Time >
Small - $0.085 /hr  32-bit 1 1.7GB 160 GB
Large - $0.34/ hr  64-bit 4 7.5GB 850 GB - 2 spindles
XLarge - $0.68/ hr  64-bit 8 15.0 GB 1690 GB — 3 spindles

Options....extra memory, extra CPU, extra disk, ...
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MapReduce as a Starting Point

* MapReduce is a functional, data-
parallel model

— Maps compute over individual data
elements, output <key, value> pairs

— System sorts by key

ANNRNRRRRRRRRANE 2
— Reduce operations compute over S [ oplito | = po—
. g split 1 | = ile

collections of data elements by key [l —

E ki E Pt
* Reverse index, PageRank, word £ [sptt | £
histograms :

. . E Input E Map Elnlcnnbdiate fileg Reduce Output

— Map operations run in parallel 2 oS o phase 2 (o local diske)2 phase files

— Reduce operations parallelized by keys [Dean, Ghemawat '@4]

e Redundant map/reduce instances for
fault tolerance

* Scalesto > 10,000 cores
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MapReduce for Graph Processing

* Google Pregel

_ _ Superstep 0
— Local functions applied to every

vertex

Superstep 1

— Vertices send/receive messages
across edges at each timestep

- Nodes retain state across (6) Superstep 2

iterations (no need to touch disk)

— Global aggregation o o Superstep 3

» Consensus, clustering, bipartite

matching [Malewicz 2010]

e Hashing + local lookup for
communication
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MapReduce for Geospatial

* SenseReduce 7N { |
AN &
— Designed for spatiotemporal data e
/' n _LosAngelesCA fair -> sunny — temperature up: 72°F -> 74°F —
humidity down: 54% -> 53%
F4° 1 minute ago via Citiesfrom Los Angeles, CA

— Operate over temporal windows

 Ability to layer multiple data sources

"Join these vector files and perform
zonal statistics with this raster file”

 Ability to read nearby geographic
features

— Bulk Synchronous, Abstract Regions

* Stack multiple analysis functions

— Perform average, then min, etc.

— Reduces redundant work
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Partitioning Algorithms

» Data must be split across multiple
machines

e Divide features into equal areas

— May artificially split features

odTerace
ntwood Villa

— Metadata update consistency a problem
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Partitioning Algorithms

» Data must be split across multiple
machines

e Divide features into equal areas

— May artificially split features

— Metadata update consistency a problem
* Divide by logical features

— May lead to unbalance if features have
different complexity

» Customized partitioning schemes,
including ability to “stack”

- i.e. first split by feature, then by area
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Scheduling and Load-balancing

* Use geography-constrained aggregation
tree

— Parents perform partial reduce

— Parents also point to geographically close
nodes — minimizes communication
across nodes, simplifies load-balancing

Reduce

* Streaming data changes computation
load over time

— Mobile sensors | "Shared boundary

— Weather remote sensing

* Rebalance computation during map and
reduce stages

— Number of features as indicators of load
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Programming at the Edge

e Datafrom “smart” network of sensors

— CPU + storage + communication

* Edge processing
— Reduce cost

— Reduce latency

OAK RIDGE NATIONAL LABORATORY



Programming at the Edge

e Datafrom “smart” network of sensors

— CPU + storage + communication

* Edge processing

o 1 | @ g v B o
— Reduce cost e &
— Reduce latency [Foanc="

=if{Fhotometer < 20 & lidark == 1 dark .= 1
=if(Fhotometer = 20 & Photometer < 70 & Hdark == 2)...

* What is the right model for edge processing? ' |=iehstometer = 70 & i{diark = = 3)) dark = 3

— MapReduce < data logger

— Functional data stream [Newton],
spreadsheets [Horey, DCOSS],
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Programming at the Edge

e Data from “smart” network of sensors
— CPU + storage + communication

* Edge processing

T T T

T s .u.n-...- ﬁ. ------- B s ines
— Reduce cost e &
— Reduce latency =0

=if{Fhotometer < 20 & lidark == 1 dark .= 1
=if(Fhotometer = 20 & Photometer < 70 & Hdark == 2)...

* What is the right model for edge processing? ' |=iehstometer = 70 & i{diark = = 3)) dark = 3

— MapReduce < data logger

Naive scheduling can lead _ 50 nodes, 5¢. = C,
to increased latency =] to/ cn

— Functional data stream [Newton],
spreadsheets [Horey, DCOSS],

%.a
1 1
)
[ I |
*x W
0o
L& I N )
th

00 02 04 06
L L 1

1000 nodes., 5¢. =

* How to schedule aggregation on these
devices?

.
.

0 02 04 06 0B 10
il 1 1 L L
@

— Assuming: information pr ing h , o2
g: information processing has to 3 T 5. v
take place somewhere [Horey, KDCloud] * 77— = & = . o
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Dangers and Pitfalls

* Lots of data — lots of opportunities for
security and privacy violations

* People will voluntarily give you sensitive
information

— And sue you later for using it

* Can we implement information processing
applications in an anonymous fashion?

— In general: No (Netflix prize)

— For specific apps: Yes
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Dangers and Pitfalls

* Lots of data — lots of opportunities for
security and privacy violations

* People will voluntarily give you sensitive
information

— And sue you later for using it

B Actual <3, 1, 2>
M Al possible negative vectors

 Can we implement information processing I am here
applications in an anonymous fashion?

— In general: No (Netflix prize)
— For specific apps: Yes
* Negative Quad Tree
— Don'treport your location
— Still build spatial distributions

— ~100,000 samples in 32x32 area (2 km?)
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Dangers and Pitfalls

These are the places where
I definitely am not

* Lots of data — lots of opportunities for
security and privacy violations

* People will voluntarily give you sensitive

information But I will report one
of these blue locations

— And sue you later for using it

* Can we implement information processing I am here

o .
applications in an anonymous fashion: Actual Negated timate

0

— In general: No (Netflix prize) ;

o 6

— For specific apps: Yes 10

12

* Negative Quad Tree 1

— Don'treport your location

0
— Still build spatial distributions ° '

0 10

E B

0 5 10 15 20 25 30

_ 5 S 15
—  ~100,000 samples in 32x32 area (1 km?) 2 20.
25

30
0 5 1015 20 25 30
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Open Questions

* Do we have a single programming model?

— Cloud — Mobile = Sensors, Text = Graphs — Geospatial

*  Will computation actually run at the edge?

— Need compelling cyberphysical examples (latency, cost, etc.)

* Are there lessons from HPC that can be applied to IPS (and vice-versa)?

— Non-blocking collectives [Hoefler]
* Whatis the right storage paradigm?

— Posix, SQL, BigTable, VDB
*  What programming language?

— IPS users are more varied

*  What application domains can benefit from both approaches?

— Computational transportation
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Conclusions

Model Parameters

'-...
~

* HPCapplications and platforms will
directly affect and benefit from IPS

— Bigger simulations = more data —
more IPS

Simulatié.)n Data
— Simulations + sensor data — better '
simulations

Data for Processing

* This will require new methods and tools

— Better programming tools

— Bigger computational platforms

* Tools and methods benefit each other

bservations
webservices™ 4

— MPIl <> MapReduce
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