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● Data-intensive computing

– “Fourth” paradigm of science [J. Gray]

● Modeling & sim

– Model parameters and generate lots of data

– Assumes a-priori you know what you are 
doing

● Information processing

– Take lots of data and produce summaries

– You may not know what you want

● These disciplines are not mutually incompatible

Information Processing Systems
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● Text

– Web, papers, emails

– Trends, NL-translation

● Social media

– Facebook, Twitter, Netfix

– Clique analysis, epidemic spread

● Computer logs

– Hardware failures, software bugs, security

– Predictive analysis, intrusion detection

● Geospatial

– GIS, satellite imagery, volunteered data

– Zonal statistics, population modeling

Sources of Data
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● Modeling & sim is heavily invested in 
parallel and distributed systems

– More computers → better simulations

– Modeling & sim is very 
heterogeneous, needs complicated 
tools (MPI)

● IPS mostly done on single machines

– Data tools emphasize ease-of-use, 
visualization

– IPS applications often homogeneous

● But things are changing

– Google, FB, Twitter

– More data, more complex, more tools

Signifcance
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Parallel, distributed:
MPI, OpenMP, ...

Workstation:
Matlab, R, PythonMost popular programming 

tool in the world

Only statisticians 
like R



 Once upon a time we were data starved

– Collecting data was/is hard, slow, and analog

 Now we have more data than we know what to do 
with

– Collecting data is become easy{ier}, fast{er}, and 
digital

– Sensors, mobile devices, volunteered data

 Data generated at increasing rates

 We must analyze data at a rate faster than 
collection or we will drown

Data Singularity
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< 100 kb / day



 Data-related problems that exceed local 
capacity

– Data becoming available at collection/storage 
limits [Shankar]

– Single-machine analysis approaching memory 
limits

• “my graph won't ft in memory so I can't 
use R”

– Gap is increasing

 Traditional data tools need to evolve

– Employ distributed resources

– Push computation to the edge for aggressive 
fltering

– Enable wider range of data scientists

What is Big Data?
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What is Big Data?

OAK RIDGE NATIONAL LABORATORY

 Data-related problems that exceed local 
capacity

– Data becoming available at collection/storage 
limits [Shankar]

– Single-machine analysis approaching memory 
limits

• “my graph won't ft in memory so I can't 
use R”

– Gap is increasing

 Traditional data tools need to evolve

– Employ distributed resources

– Push computation to the edge for aggressive 
fltering

– Enable wider range of data scientists

What will these tools look like?
Where can I get lots of machines?



● “Maybe I’m an idiot, but I have no idea what 
anyone is talking about” [L. Ellison]

● [Hardware, platform]-as-a-service

● No contracts, no grants, almost instantly available

● Enable scale-up and 

scale-down

Cloud Computing
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Not so great for HPC



Cloud Computing
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● “Maybe I’m an idiot, but I have no idea what 
anyone is talking about” [L. Ellison]

● [Hardware, platform]-as-a-service

● No contracts, no grants, almost instantly available

● Enable scale-up and 

scale-down

● Opaque interconnect

Can Clouds help us with the Big Data problem?



● MapReduce is a functional, data-
parallel model

– Maps compute over individual data 
elements, output <key, value> pairs

– System sorts by key

– Reduce operations compute over 
collections of data elements by key

● Reverse index, PageRank, word 
histograms

– Map operations run in parallel

– Reduce operations parallelized by keys

● Redundant map/reduce instances for 
fault tolerance

● Scales to > 10,000 cores

MapReduce as a Starting Point
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[Dean, Ghemawat  '04]



● Google Pregel

– Local functions applied to every 
vertex

– Vertices send/receive messages 
across edges at each timestep

– Nodes retain state across 
iterations (no need to touch disk)

– Global aggregation

● Consensus, clustering, bipartite 
matching

● Hashing + local lookup for 
communication

MapReduce for Graph Processing
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[Malewicz 2010]



  

● SenseReduce

– Designed for spatiotemporal data

– Operate over temporal windows

● Ability to layer multiple data sources

– “Join these vector fles and perform 
zonal statistics with this raster fle” 

● Ability to read nearby geographic 
features

– Bulk Synchronous, Abstract Regions

● Stack multiple analysis functions

– Perform average, then min, etc.

– Reduces redundant work

MapReduce for Geospatial
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● Data must be split across multiple 
machines

● Divide features into equal areas

– May artifcially split features

– Metadata update consistency a problem

● Divide by logical features

– May lead to unbalance if features have 
diferent complexity

● Customized partitioning schemes, 
including ability to “stack”

– i.e. frst split by feature, then by area

Partitioning Algorithms
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 Use geography-constrained aggregation 
tree

– Parents perform partial reduce

– Parents also point to geographically close 
nodes → minimizes communication 
across nodes, simplifes load-balancing

● Streaming data changes computation 
load over time

– Mobile sensors

– Weather remote sensing

● Rebalance computation during map and 
reduce stages

– Number of features as indicators of load

Scheduling and Load-balancing
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Shared boundary

No shared boundary

ReduceReduce



 Data from “smart” network of sensors

– CPU + storage + communication

 Edge processing

– Reduce cost

– Reduce latency

 What is the right model for edge processing?

– MapReduce ↔ data logger

– Functional data stream [Newton], 
spreadsheets [Horey, DCOSS],  

 How to schedule aggregation on these 
devices?

– Assuming: information processing has to 
take place somewhere [Horey, KDCloud]

Programming at the Edge
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Naïve scheduling can lead 
to increased latency



 Lots of data → lots of opportunities for 
security and privacy violations

 People will voluntarily give you sensitive 
information

– And sue you later for using it

 Can we implement information processing 
applications in an anonymous fashion?

– In general: No (Netfix prize)

– For specifc apps: Yes

 Negative Quad Tree

– Don't report your location

– Still build spatial distributions

– ~100,000 samples in 32x32 area (1 km2)

Dangers and Pitfalls
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I am here
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I am here

But I will report one 
of these blue locations

These are the places where 
I definitely am not
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 Do we have a single programming model?

– Cloud → Mobile → Sensors, Text → Graphs → Geospatial

 Will computation actually run at the edge?

– Need compelling cyberphysical examples (latency, cost, etc.)

 Are there lessons from HPC that can be applied to IPS (and vice-versa)?

– Non-blocking collectives [Hoefer]

 What is the right storage paradigm?

– Posix, SQL, BigTable, VDB

 What programming language?

– IPS users are more varied

 What application domains can beneft from both approaches?

– Computational transportation

Open Questions
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Conclusions
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 HPC applications and platforms will 
directly afect and beneft from IPS

– Bigger simulations → more data → 
more IPS

– Simulations + sensor data → better 
simulations

 This will require new methods and tools

– Better programming tools

– Bigger computational platforms
 Tools and methods beneft each other

– MPI ↔ MapReduce

Simulation Data

Model Parameters

Data for Processing

Observations
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