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Outline

GPU Computing Overview
Contemporary GPU Architecture - Fermi
Challenges on the road to Exascale

Energy efficiency
Managing extreme parallelism

Echelon – NVIDIA’s UHPC project
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History of GPU Computing

1.0: Compute pretending to be graphics (early 2000s)
Disguise data as textures or geometry
Disguise algorithm as render passes
Trick graphics pipeline into doing your computation!

2.0: Program GPU directly – end of “GPGPU”
No graphics-based restrictions
2006: Introduction of CUDA – general purpose compute 
language for hybrid GPU systems

3.0: GPU computing ecosystem (today)
100,000+ active CUDA developers
Libraries, debuggers, performance tools, HPC/consumer 
applications, ISV applications and support
Education and research (350 universities teaching CUDA)
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Existing GPU Application Areas
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CUDA Ecosystem - I
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CUDA Ecosystem - II
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Throughput Processor Ingredients

High arithmetic and memory bandwidth
Throughput more important than latency

Hide DRAM latency with multithreading
Explicit parallelism via fine-grained threads

Architecture
Programming system

Hardware thread management
Thread creation/sync
Scheduling
Memory allocation



@ NVIDIA 2010



@ NVIDIA 2010 9

Fermi Focus Areas

Expand performance 
sweet spot of the GPU

Caching
Concurrent kernels
FP64
512 cores
GDDR5 memory

Bring more users, 
more applications to 
the GPU

C++
Visual Studio 
Integration
ECC
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Streaming Multiprocessor (SM)
Objective – optimize for GPU computing

New ISA
Revamp issue / control flow
New CUDA core architecture

16 SMs per Fermi chip
32 cores per SM 
(512 total)
64KB of configurable 
L1$ / shared memory
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SM Microarchitecture

New IEEE 754-2008 
arithmetic standard

Fused Multiply-Add 
(FMA) for SP & DP

New integer ALU 
optimized for 64-bit and 
extended precision ops
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Memory Hierarchy

True cache hierarchy + on-chip shared RAM
On-chip shared memory: good fit for regular 
memory access

dense linear algebra, image processing, …
Caches: good fit for irregular or unpredictable 
memory access

ray tracing, sparse matrix multiply, physics …

Separate L1 Cache for each SM (16/48 KB)
Improves bandwidth and reduces latency

Unified L2 Cache for all SMs (768 KB)
Fast, coherent data sharing across all 
cores in the GPU

GDDR5 memory interface
2x improvement in peak speed over GDDR3
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Presenter
Presentation Notes
Each Fermi SM multiprocessor has 64 KB of high-speed, on-chip RAM configurable as 48 KB of Shared memory with 16 KB of L1 cache, or as 16 KB of Shared memory with 48 KB of L1 cache. When configured with 48 KB of shared memory, programs that make extensive use of shared memory (such as electrodynamic simulations) can perform up to three times faster. For programs whose memory accesses are not known beforehand, the 48 KB L1 cache configuration offers greatly improved performance over direct access to DRAM. 



Fermi also features a 768 KB unified L2 cache that services all load, store, and texture requests. The L2 cache is coherent across all SMs. The L2 provides efficient, high speed data sharing across the GPU. Algorithms for which data addresses are not known beforehand, such as physics solvers, raytracing, and sparse matrix multiplication especially benefit from the cache hierarchy. 
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Other Capabilities

Hierarchically manages tens of thousands of 
simultaneously active threads (20,000+ per chip)

ECC protection for DRAM, L2, L1, RF

Unified 40-bit address space for local, shared, global

5-20x faster atomics

ISA extensions for C++ (e.g. virtual functions)
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G80 GT200 Fermi

Transistors 681 million 1.4 billion 3.0 billion

CUDA Cores 128 240 512

Double Precision Floating Point - 30 FMA ops/clock 256 FMA ops/clock

Single Precision Floating Point 128 MAD ops/clock 240 MAD ops/clock 512 FMA ops/clock

Special Function Units (per SM) 2 2 4

Warp schedulers (per SM) 1 1 2

Shared Memory (per SM) 16 KB 16 KB Configurable 48/16 KB

L1 Cache (per SM) - - Configurable 16/48 KB

L2 Cache - - 768 KB

ECC Memory Support - - Yes

Concurrent Kernels - - Up to 16

Load/Store Address Width 32-bit 32-bit 64-bit

Tesla C2050 Performance

515 DP GFlops
1.03 SP TFlops

144 GB/sec memory BW
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GPU-based Supercomputers

June 2010 – top 500
#2 Nebulae (NVIDIA Fermi): 1.2 PFlops
#7 Tianhe-1 (ATI Radeon): 560 TFlops
#19 Mole 8.5 (NVIDIA Tesla): 207 TFlops
#64 Tsubame (NVIDIA Tesla): 87 TFlops

Multiple petascale systems not submitted to top-500
On the horizon

Tsubame 2.0 (NVIDIA Fermi): projected ~2 PFlops
GaTech Keeneland (NVIDIA Fermi): projected ~2 PFlops
Oak Ridge Leadership Computing Facility
Numerous others
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TSUBAME 2.0
Tsubame 2.0 Cluster
1408 nodes with peak perf
•4224 GPUs = 2175 TFlops
•2816 CPUs =   216 TFlops
Memory = 80.55 TB
SSD = 173.88 TB

HP SL390 Server
3x NVIDIA Tesla M2050 GPUs
2x Intel Westmere-EP CPU
52 GB DDR3 Memory 
2x 60 GB SSD 
2x QDR InfiniBand

Results from G80 and T10 GPUs on Tsubame 1.2
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Heterogeneous = Higher Perf / Watt

MFLOPS/Watt

Presenter
Presentation Notes
GPU-based Nebulae is 2x Perf / Watt of x86 Jaguar

Nebulae is 1.27 PF at 2.55 MegaWatt, Jaguar is 1.76 PF at 7 MegaWatt

In fact, other hybrid systems like Roadrunner (IBM Cell) and Jugene (IBM BlueGene) are also much better perf/watt than x86 based supercomputers
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Key Challenges for Exascale

Energy to Solution is too large
Energy per instruction too high
Energy wasted moving data up/down memory hierarchy
Energy managed inefficiently

Programming parallel machines is too difficult
Must specify locality and concurrency simultaneously
No single programming model expresses parallelism at all 
scales

Programs are not scalable to billion-fold parallelism
AMTTI is too low and not matched to app. needs
Machines are vulnerable to attacks/undetected 
program errors
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Where is the energy going?

20mm
64-bit DP

20pJ
26 pJ 256 pJ

1 nJ

500 pJ
Efficient
off-chip

link

28nm

256-bit
buses

Fetching operands costs more than computing on them:

16 nJ
DRAM
Rd/Wr

256-bit access
8 kB SRAM

50 pJ

20 pJ/FLOP (system) by 2018 (11 nm) implies 20MW for Exaflop system
-Will only get ~2.5x from process on math units, memories 
-Wire fJ/transition/mm scaling a bigger problem
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How will thread count scale?

For GPU-based systems with threads/SM chosen for 
memory latency tolerance

Billion-fold parallel fine-grained threads for Exascale

2010:
4640 GPUs

2018: 
90K GPUs

Threads/SM 1.5 K ~103

Threads/GPU 21 K ~105

Threads/Cabinet 672 K ~107

Threads/Machine 97 M ~109-1010
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Echelon Team

Georgia Tech

Stanford

UC Berkeley

U. Pennsylvania

UT-Austin

U. Utah
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Objectives

• Two orders of magnitude increase in application 
execution energy efficiency over today’s CPU systems.

• Improve programmer productivity so that the time 
required to write a parallel program achieving a large 
fraction of peak efficiency is comparable to the time 
required to write a serial program today.

• Strong scaling for many applications to tens of millions 
of threads in UHPC system (billions in Exascale)

• High application mean-time to interrupt (AMTTI) with 
low overhead; matched to application needs.

• Machines resilient to attack; enables reliable software.
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Approach
• Co-design of Programming system, architecture, algorithms
• Energy challenge

• Fine-grained, energy-optimized, multithreaded throughput cores + 
latency-optimized cores

• Low-power, high speed communication circuits
• Exposed and optimized vertical memory hierarchy

• Programming challenge
• Programming systems that express concurrency/locality 

abstractly; autotuning for hardware mapping
• Software selective memory hierarchy configuration; selective 

coherence for non-critical data
• Self-aware runtime reacts to changes in environment, workload 

(load-balance), fault states
• Resilience challenge

• HW/SW cooperative resilience for energy- and performance- 
efficient fault protection

• Guarded pointers for memory safety
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System Sketch

• Two orders of magnitude increase in application execution energy efficiency over today’s CPU 
systems.

1 ExaFlop (peak)

384 cabinets * 55 KW/cabinet 
= 21 MW
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Notional Streaming Multiprocessor 
(Throughput Cores)

Thread-, instruction-, 
and data-level 
parallelism
Thousands of 
threads per SM, 
organized into 
thread arrays
Exploit parallelism 
across time and 
space
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Energy Efficiency

CPUs today are ~2nJ/FLOPS (DP FLOPS sustained)
GPUs are ~300pJ/FLOPS
Echelon needs to achieve 20pJ/FLOPS (sustained 
across entire system)
Process scaling 40nm to 11nm will get us ~4x
We need another 4x from energy-optimized 
architecture and circuits

Energy-efficient instruction and data supply
Energy optimized execution microarchitectures
Energy-optimized Vdd and Vth

Optimized storage hierarchy to reduce data movement
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Programmer Productivity

Productivity and Efficiency languages
Global address space
Default global cache coherence

Applied selectively for performance
Abstract, explicit control where needed

Hierarchy of private memories
Bulk transfers
Autotuning of parameters for a  particular target

Expose all available parallelism
Autotuner serializes as needed for a particular target
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Strong Scaling

Parallelism increases, problem size remains constant
Smaller threads, more frequent comm/sync
Synchronization mechanisms

Dynamic barriers: init, join, wait
Producer/consumer bits
Message-driven activation

Communication mechanisms
Configurable ‘shared’ memory
User-level messages
Near-memory and near-NIC processing (collectives/sync)
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The Future of High Performance 
Computing

Power constraints dictate extreme energy efficiency

All future interesting problems will be cast as 
throughput workloads

GPUs are evolving to be the general-purpose 
throughput processors

CPUs
Latency-optimized cores will be important for Amdahl’s law 
mitigation
But CPUs as we know them will become (already are?) 
“good enough”, and shrink to a corner of the die/system
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Questions?
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