
@ NVIDIA 2010

@ NVIDIA 2010 2

Outline

GPU Computing Overview
Contemporary GPU Architecture - Fermi
Challenges on the road to Exascale

Energy efficiency
Managing extreme parallelism

Echelon – NVIDIA’s UHPC project

@ NVIDIA 2010 3

History of GPU Computing

1.0: Compute pretending to be graphics (early 2000s)
Disguise data as textures or geometry
Disguise algorithm as render passes
Trick graphics pipeline into doing your computation!

2.0: Program GPU directly – end of “GPGPU”
No graphics-based restrictions
2006: Introduction of CUDA – general purpose compute
language for hybrid GPU systems

3.0: GPU computing ecosystem (today)
100,000+ active CUDA developers
Libraries, debuggers, performance tools, HPC/consumer
applications, ISV applications and support
Education and research (350 universities teaching CUDA)

@ NVIDIA 2010 4

Existing GPU Application Areas

@ NVIDIA 2010 5

CUDA Ecosystem - I

@ NVIDIA 2010 6

CUDA Ecosystem - II

@ NVIDIA 2010 7

Throughput Processor Ingredients

High arithmetic and memory bandwidth
Throughput more important than latency

Hide DRAM latency with multithreading
Explicit parallelism via fine-grained threads

Architecture
Programming system

Hardware thread management
Thread creation/sync
Scheduling
Memory allocation

@ NVIDIA 2010

@ NVIDIA 2010 9

Fermi Focus Areas

Expand performance
sweet spot of the GPU

Caching
Concurrent kernels
FP64
512 cores
GDDR5 memory

Bring more users,
more applications to
the GPU

C++
Visual Studio
Integration
ECC

D
R

A
M

 I/
F

D
R

A
M

 I/
F

H
O

ST
 I/

F
H

O
ST

 I/
F

G
ig

a
Th

re
ad

D
R

A
M

 I/
F

D
R

A
M

 I/
F D

R
A

M
 I/F

D
R

A
M

 I/F
D

R
A

M
 I/F

D
R

A
M

 I/F
D

R
A

M
 I/F

D
R

A
M

 I/F
D

R
A

M
 I/F

D
R

A
M

 I/F

L2L2

@ NVIDIA 2010 10

Streaming Multiprocessor (SM)
Objective – optimize for GPU computing

New ISA
Revamp issue / control flow
New CUDA core architecture

16 SMs per Fermi chip
32 cores per SM
(512 total)
64KB of configurable
L1$ / shared memory

Register FileRegister File

SchedulerScheduler

DispatchDispatch

SchedulerScheduler

DispatchDispatch

Load/Store Units x 16
Special Func Units x 4

Interconnect NetworkInterconnect Network

64K Configurable64K Configurable
Cache/Shared Cache/Shared MemMem

Uniform CacheUniform Cache

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

Instruction CacheInstruction Cache

FP32FP32 FP64FP64 INTINT SFUSFU LD/STLD/ST
Ops / Ops / clkclk 3232 1616 3232 44 1616

@ NVIDIA 2010 11

SM Microarchitecture

New IEEE 754-2008
arithmetic standard

Fused Multiply-Add
(FMA) for SP & DP

New integer ALU
optimized for 64-bit and
extended precision ops

Register FileRegister File

SchedulerScheduler

DispatchDispatch

SchedulerScheduler

DispatchDispatch

Load/Store Units x 16
Special Func Units x 4

Interconnect NetworkInterconnect Network

64K Configurable64K Configurable
Cache/Shared Cache/Shared MemMem

Uniform CacheUniform Cache

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

Instruction CacheInstruction Cache

CUDA CoreCUDA Core
Dispatch PortDispatch Port

Operand CollectorOperand Collector

Result QueueResult Queue

FP Unit INT Unit

@ NVIDIA 2010 12

Memory Hierarchy

True cache hierarchy + on-chip shared RAM
On-chip shared memory: good fit for regular
memory access

dense linear algebra, image processing, …
Caches: good fit for irregular or unpredictable
memory access

ray tracing, sparse matrix multiply, physics …

Separate L1 Cache for each SM (16/48 KB)
Improves bandwidth and reduces latency

Unified L2 Cache for all SMs (768 KB)
Fast, coherent data sharing across all
cores in the GPU

GDDR5 memory interface
2x improvement in peak speed over GDDR3

D
R

AM
 I/

F
D

R
AM

 I/
F

G
ig

a
Th

re
ad

H
O

ST
 I/

F
H

O
ST

 I/
F

D
R

AM
 I/

F
D

R
AM

 I/
F

D
R

AM
 I/F

D
R

AM
 I/F

D
R

AM
 I/F

D
R

AM
 I/F

D
R

AM
 I/F

D
R

AM
 I/F

D
R

AM
 I/F

D
R

AM
 I/F

L2L2

Presenter
Presentation Notes
Each Fermi SM multiprocessor has 64 KB of high-speed, on-chip RAM configurable as 48 KB of Shared memory with 16 KB of L1 cache, or as 16 KB of Shared memory with 48 KB of L1 cache. When configured with 48 KB of shared memory, programs that make extensive use of shared memory (such as electrodynamic simulations) can perform up to three times faster. For programs whose memory accesses are not known beforehand, the 48 KB L1 cache configuration offers greatly improved performance over direct access to DRAM.

Fermi also features a 768 KB unified L2 cache that services all load, store, and texture requests. The L2 cache is coherent across all SMs. The L2 provides efficient, high speed data sharing across the GPU. Algorithms for which data addresses are not known beforehand, such as physics solvers, raytracing, and sparse matrix multiplication especially benefit from the cache hierarchy.

@ NVIDIA 2010 13

Other Capabilities

Hierarchically manages tens of thousands of
simultaneously active threads (20,000+ per chip)

ECC protection for DRAM, L2, L1, RF

Unified 40-bit address space for local, shared, global

5-20x faster atomics

ISA extensions for C++ (e.g. virtual functions)

@ NVIDIA 2010 14

G80 GT200 Fermi

Transistors 681 million 1.4 billion 3.0 billion

CUDA Cores 128 240 512

Double Precision Floating Point - 30 FMA ops/clock 256 FMA ops/clock

Single Precision Floating Point 128 MAD ops/clock 240 MAD ops/clock 512 FMA ops/clock

Special Function Units (per SM) 2 2 4

Warp schedulers (per SM) 1 1 2

Shared Memory (per SM) 16 KB 16 KB Configurable 48/16 KB

L1 Cache (per SM) - - Configurable 16/48 KB

L2 Cache - - 768 KB

ECC Memory Support - - Yes

Concurrent Kernels - - Up to 16

Load/Store Address Width 32-bit 32-bit 64-bit

Tesla C2050 Performance

515 DP GFlops
1.03 SP TFlops

144 GB/sec memory BW

@ NVIDIA 2010 15

GPU-based Supercomputers

June 2010 – top 500
#2 Nebulae (NVIDIA Fermi): 1.2 PFlops
#7 Tianhe-1 (ATI Radeon): 560 TFlops
#19 Mole 8.5 (NVIDIA Tesla): 207 TFlops
#64 Tsubame (NVIDIA Tesla): 87 TFlops

Multiple petascale systems not submitted to top-500
On the horizon

Tsubame 2.0 (NVIDIA Fermi): projected ~2 PFlops
GaTech Keeneland (NVIDIA Fermi): projected ~2 PFlops
Oak Ridge Leadership Computing Facility
Numerous others

@ NVIDIA 2010 16

TSUBAME 2.0
Tsubame 2.0 Cluster
1408 nodes with peak perf
•4224 GPUs = 2175 TFlops
•2816 CPUs = 216 TFlops
Memory = 80.55 TB
SSD = 173.88 TB

HP SL390 Server
3x NVIDIA Tesla M2050 GPUs
2x Intel Westmere-EP CPU
52 GB DDR3 Memory
2x 60 GB SSD
2x QDR InfiniBand

Results from G80 and T10 GPUs on Tsubame 1.2

@ NVIDIA 2010 17

Heterogeneous = Higher Perf / Watt

MFLOPS/Watt

Presenter
Presentation Notes
GPU-based Nebulae is 2x Perf / Watt of x86 Jaguar

Nebulae is 1.27 PF at 2.55 MegaWatt, Jaguar is 1.76 PF at 7 MegaWatt

In fact, other hybrid systems like Roadrunner (IBM Cell) and Jugene (IBM BlueGene) are also much better perf/watt than x86 based supercomputers

@ NVIDIA 2010

@ NVIDIA 2010 19

Key Challenges for Exascale

Energy to Solution is too large
Energy per instruction too high
Energy wasted moving data up/down memory hierarchy
Energy managed inefficiently

Programming parallel machines is too difficult
Must specify locality and concurrency simultaneously
No single programming model expresses parallelism at all
scales

Programs are not scalable to billion-fold parallelism
AMTTI is too low and not matched to app. needs
Machines are vulnerable to attacks/undetected
program errors

@ NVIDIA 2010 20

Where is the energy going?

20mm
64-bit DP

20pJ
26 pJ 256 pJ

1 nJ

500 pJ
Efficient
off-chip

link

28nm

256-bit
buses

Fetching operands costs more than computing on them:

16 nJ
DRAM
Rd/Wr

256-bit access
8 kB SRAM

50 pJ

20 pJ/FLOP (system) by 2018 (11 nm) implies 20MW for Exaflop system
-Will only get ~2.5x from process on math units, memories
-Wire fJ/transition/mm scaling a bigger problem

@ NVIDIA 2010 21

How will thread count scale?

For GPU-based systems with threads/SM chosen for
memory latency tolerance

Billion-fold parallel fine-grained threads for Exascale

2010:
4640 GPUs

2018:
90K GPUs

Threads/SM 1.5 K ~103

Threads/GPU 21 K ~105

Threads/Cabinet 672 K ~107

Threads/Machine 97 M ~109-1010

@ NVIDIA 2010 22

@ NVIDIA 2010 23

Echelon Team

Georgia Tech

Stanford

UC Berkeley

U. Pennsylvania

UT-Austin

U. Utah

@ NVIDIA 2010 24

Objectives

• Two orders of magnitude increase in application
execution energy efficiency over today’s CPU systems.

• Improve programmer productivity so that the time
required to write a parallel program achieving a large
fraction of peak efficiency is comparable to the time
required to write a serial program today.

• Strong scaling for many applications to tens of millions
of threads in UHPC system (billions in Exascale)

• High application mean-time to interrupt (AMTTI) with
low overhead; matched to application needs.

• Machines resilient to attack; enables reliable software.

@ NVIDIA 2010 25

Approach
• Co-design of Programming system, architecture, algorithms
• Energy challenge

• Fine-grained, energy-optimized, multithreaded throughput cores +
latency-optimized cores

• Low-power, high speed communication circuits
• Exposed and optimized vertical memory hierarchy

• Programming challenge
• Programming systems that express concurrency/locality

abstractly; autotuning for hardware mapping
• Software selective memory hierarchy configuration; selective

coherence for non-critical data
• Self-aware runtime reacts to changes in environment, workload

(load-balance), fault states
• Resilience challenge

• HW/SW cooperative resilience for energy- and performance-
efficient fault protection

• Guarded pointers for memory safety

@ NVIDIA 2010 26

System Sketch

• Two orders of magnitude increase in application execution energy efficiency over today’s CPU
systems.

1 ExaFlop (peak)

384 cabinets * 55 KW/cabinet
= 21 MW

@ NVIDIA 2010 27

Notional Streaming Multiprocessor
(Throughput Cores)

Thread-, instruction-,
and data-level
parallelism
Thousands of
threads per SM,
organized into
thread arrays
Exploit parallelism
across time and
space

@ NVIDIA 2010 28

Energy Efficiency

CPUs today are ~2nJ/FLOPS (DP FLOPS sustained)
GPUs are ~300pJ/FLOPS
Echelon needs to achieve 20pJ/FLOPS (sustained
across entire system)
Process scaling 40nm to 11nm will get us ~4x
We need another 4x from energy-optimized
architecture and circuits

Energy-efficient instruction and data supply
Energy optimized execution microarchitectures
Energy-optimized Vdd and Vth

Optimized storage hierarchy to reduce data movement

@ NVIDIA 2010 29

Programmer Productivity

Productivity and Efficiency languages
Global address space
Default global cache coherence

Applied selectively for performance
Abstract, explicit control where needed

Hierarchy of private memories
Bulk transfers
Autotuning of parameters for a particular target

Expose all available parallelism
Autotuner serializes as needed for a particular target

@ NVIDIA 2010 30

Strong Scaling

Parallelism increases, problem size remains constant
Smaller threads, more frequent comm/sync
Synchronization mechanisms

Dynamic barriers: init, join, wait
Producer/consumer bits
Message-driven activation

Communication mechanisms
Configurable ‘shared’ memory
User-level messages
Near-memory and near-NIC processing (collectives/sync)

@ NVIDIA 2010 31

The Future of High Performance
Computing

Power constraints dictate extreme energy efficiency

All future interesting problems will be cast as
throughput workloads

GPUs are evolving to be the general-purpose
throughput processors

CPUs
Latency-optimized cores will be important for Amdahl’s law
mitigation
But CPUs as we know them will become (already are?)
“good enough”, and shrink to a corner of the die/system

@ NVIDIA 2010

Questions?

	Slide Number 1
	Outline
	History of GPU Computing
	Existing GPU Application Areas
	CUDA Ecosystem - I
	CUDA Ecosystem - II
	Throughput Processor Ingredients
	Slide Number 8
	Fermi Focus Areas
	Streaming Multiprocessor (SM)
	SM Microarchitecture
	Memory Hierarchy
	Other Capabilities
	Slide Number 14
	GPU-based Supercomputers
	TSUBAME 2.0
	Heterogeneous = Higher Perf / Watt
	Slide Number 18
	Key Challenges for Exascale
	Where is the energy going?
	How will thread count scale?
	Slide Number 22
	Slide Number 23
	Objectives
	Approach
	System Sketch
	Notional Streaming Multiprocessor (Throughput Cores)
	Energy Efficiency
	Programmer Productivity
	Strong Scaling
	The Future of High Performance Computing
	Questions?

