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Berkeley’s 13 Motifs

“Motif/Dwarf" Popularity
(Red Hot — Blue Cool)

« How do compelling apps relate to 13
motif/dwarfs?

1 Finite State Mach.
2 Combinational
3 Graph Traversal
4 Structured Grid
5 Dense Matrix
6 Sparse Matrix
7 Spectral (FFT)
8 Dynamic Prog
9 N-Body
10 MapReduce
11 Backtrack/ B&B
12 Graphical Models
439 ctured Grid

.//lwww.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-23.html




Application Performance Metric

What does this all mean?

— Each application
P Is a different
point on this 3D
grid (actually a
curve)
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Take an Operation Research Method
of Prediction

e Moore’s Law

e Application Specific
— Matrices
— Matrix Arithmetic Bayesian Decision Theory

e Hard IP for floating point | . .
n a formal model the conclusions are derived from
° Number Of A“thmetlc Engines definitions and assumptions. . . .But with informal,

verbal reasoning. . . one can argue until one is blue in

o System Arch and Programming [ttt

there is no criterion for deciding the soundness of an

mOdel informal argument.
— Language directed design Robert
e Resulting Analysis .
— Benefit
— Mean and +/- sigma (if
normal)
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Moore’s Law

e Feature Set
— Every 2 years twice the
logic
— Thus by 2020

8 times the logic, same
clock rate

— Mean Factor of 7, sigma
+/- 2

e Benefit

— 8 times the performance,
same clock rate, same
internal architecture
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Application Specific

® Feature Set TOP500 Supercomputer Sites
e Matrix Engine
 Mean Factor of 4 +4/- 1
— Poisson

e June 2010 Linpack
— Jaguar 75%
e June 1996 Linpack (% of peak)
— NEC SX/4/20 = 95%
— Fujitsu VPP/30 = 81%
e Benefit
— 90% of Peak
— Matrix Arithmetic's

— Outer Loop Parallel/Inner
Loop vector within ONE
functional unit
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3D
 Modular content

— Datatypes: IEEE SP, IEEE DP, 32-

bit integer, 64-bit integer, bit Dispatch & Control
— Operations: simple, compound,

reductions
— Dimensionality: 1d, 2d, 3d registers

— memory access: gather/scatter,
strided, under mask,
multidimensional

— register access pattern: halo, sparse
periodic access, under mask,
multidimensional

e Number of function units determined by
functionality selected

Address
Generation
lun uornound

Crossbar

NERERNA
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3D Finite Difference (3DFD)

Personality

designed for nearest neighbor
operations on structured grids

— maximizes data reuse

reconfigurable “registers”

— 1D (vector), 2D, and 3D
modes

— 8192 elements in a register
operations on entire cubes

— “add points to their neighbor to
the left times a scalar” is a
single instruction

— up to 7 points away in any
direction

finite difference method for
post-stack reverse-time
migration

@) CONVEY
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FPGA -Hard IP Floating Point

e [eature Set
— By 2020

— Fused Multiply Add -
Mean Factor of 8 +/- 2

— Reconfigurable IP Multiply
and Add — Mean Factor 4
+/-1

— Bigger fixed point DSP’s —
Mean Factor of 3

* Benefit
— More Floating Point ALU’s

— More routing paths
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Number of AE FPGA’s per node

e Feature Set
— 4, 8, or 16 as a function of
physical memory capacity
e 4 -One byte per flop -
mean factor of 1
» 8- hyte per flop —
mean factor of 2

o 16 -Y4 byte per flop — mean
factor of 4

e Benefit
— More Internal Parallelism
— Transparent to user

— Potential heterogeneity
within node
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Convey Compilers

C/C++ ] Fortran95

Program in ANSI standard U Il
Optimizer
— PGAS ready [ ] [ |
Unified compiler generates intel® 64§ Convey R gther gec
Optimizer Vectorizer :

X86 & coprocessor & code 1| & Code COfEPatt'b'e
Instructions Generator A Generator OPISEES
Seamless debugging 1 l 1
environment for Intel &
coprocessor code

Executable can run on U
Xx86_64 nodes or on Convey

Hybrid-Core nodes ROBfoFRsIONsoRs
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Programming Model

Example 4.1-1: Matrix by Vector Multiply

. #include<upc_relaxed.h>

. #define N 200*THREADS

: shared [N] double A[N][NT]; NOTE: Thread is 16000
: shared double b[N], X[N];

- void main()

{ 3

Inti,j;

. [* reading the elements of matrix A and the
9: vector x and initializing the vector b to zeros
10: */

11: upc_forall(i=0;i1<N;i++;1)

12: for(j=0;j<N;j++)

13: b[i]+=Al]0]*xD] ;

14: }
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e Using the mean

C

Math results In

7 Moore’s law
4 Matrix arithmetics

.90 efficiency (percentage
of peak)
8 Fused multiply/add (64
bits)
4 16 AE’s (user visible
pipelines) per node
Or a MEAN of 800 times
today

» Best Case — 2304

» Worst Case - 448

CONVEY swallach - oct 2010 - fall creek
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The System

e 2010 base level node is 80 GFlops/node
(peak)
e Thus7x4x.9x8x4 =806 Factor ¢

—  Mean of 800 = +1500 (upside)/- 400
(downside)

— 64 TFlops/node (peak)
— 16,000 Nodes/Exascale Linpack

e 64 bit virtual address space
— Flat address space
— UPC addressing paradigm integrated within

|
TLB hardware = b et [ ' s
—  Programming model is 16000 shared memory e BB g Ty 3
nodes ; 218 I (N ¥
»  Compiler optimizations (user transparent) deal ity | TH ? ﬂ v, £
with local node micro-architecture ' ek __L Jﬁ -
Power is 2 KWatts/Node (3U rack mounted) — J & 8
— 32 MegaWatts/system i

— 32 TBytes/Node (288 PetaBytes — system) N |
—  Physical Memory approx 60% of power
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INTEGRATED SMP - WDM

DRAM - 16/32 TeraBytes - HIGHLY INTERLEAVED
MULTI-LAMBDA
Xmit/receive

| | | | P A—
—

CROSS BAR

6.4 TBYTES/SEC

.1 bytes/sec per
Peak flop

To Memory Controllers
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COTS ExaFIop System

Single Node

16 FPGA AE
ALL-OPTICAL
SWITCH

10 meters= 50 NS Delay
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What can be done to:

e Reduce power
— 3D packaging
» Reduce power in chip to chip
interface
» Better DRAM utilization
» More power domains (selectively
power up/down die regions)
» Architecture (relative to strawman)

— Less Nodes

e More matrix arithmetics

— Twice the performance, same
power

» More floating point IP

— Twice the performance, same
power

— Less Physical Memory

» Y byte per flops or 15
TBytes/Node yields 20 MWatts

e (144 PetaBytes Total)
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Concluding

I HATE SALES. CAN
YOU CROS5—TRALN ME
TO BE AN ENGINEER?
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