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The 4th

 

Paradigm?


 

Maybe



 

The reality is that data 

is becoming a much 

larger part of science 

and human society in 

general
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Sciences Becoming Data Intensive



 

Existing ability to generate science data is 
already challenging our ability to store, 
analyze, and archive.



 

Some observational devices grow in 
capability with Moore’s Law.



 

Data sizes are growing exponentially.



 

Petabyte (PB) data sets are becoming 
common: 



 

Climate: next IPCC estimates 10s of PBs



 

Genome: JGI alone will have about 1 PB 
this year and double each year



 

Particle physics: LHC projects 16 PB / yr 



 

Astrophysics: LSST, others, estimate 5 PB 
/ yr



 

Exascale HPC simulations will lead to 
exascale datasets 3



I/O Performance Challenges

Performance Crisis #1
•Disk speed lags compute speed.
•To achieve reasonable aggregate
bandwidth many spindles needed –
103 spindles = 1PB but only ~0.1TB/s !
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Data Analysis Challenges: Complex 
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Data Analysis Challenges: Integration
 Many sources, Different formats, Varying volumes

Dataset

Experiment
Data

Simulation
Data

Observation
Data



Data Analysis Challenges: Verification

Simulations now being used to make major 

decisions, not just study phenomena


 

Climate model CCSM 100 year predictions



 

ASCEM –

 

Subsurface simulations for environmental management 
(DOE-EM)



 

CCSI –

 

Carbon Capture simulation initiative



 

Simulations of combustion for new fuels and burners

Understanding uncertainty is critical



 

statistical methods for initial data space



 

generates large amounts of data 

Versioning and provenance of results



 

make results traceable and repeatable 



Data Movement on the Exascale

Users often need help moving large datasets


 

Five requests recently to move 30+TB sized data sets between 
NERSC and other facilities.

Network connections are hampered by firewalls, 
improperly configurations, and unexpected bottlenecks


 

~10 MB/sec if it worked



 

More than 30 days to transfer data

After network tuning, new dedicated tuned systems, file 
system, client testing, and better management tool (ANL, 
ORNL and NERSC DTNs), 200+MB/sec


 

Just over 2 days to transfer data

On the exascale


 

Better management software on intelligent network e.g., 
ESNet/ANI



 

Move as little data as possible
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Additional Data Ecosystem Challenges

Data Analysis 



 

Collaborative data validation and verification



 

Data processing to develop an enhanced dataset



 

Support for new analysis capabilities



 

Search based on data properties

Data Management



 

Ontology development



 

Connecting publications resulting from data analysis to the 

underlying data

Tools



 

Generate and process/analyze subsets



 

Visualization support (e.g. data standards…)



Possible Hardware Solutions: Flash Storage

Memory per Flop decreasing

Solid State Storage could fill the latency 

gap



 

High bandwidth, low-latency

Flash Storage Testbeds



 

~ 10TB in NERSC Global File system (NGF) for 
metadata acceleration



 

16TB as local SSD in “Magellan”

 

cloud test 

bed for data analytics, local read-only data, local 

temp storage



Architectures for data analytics



 

With government support, Cray developed the eXtreme 

MultiThreading (XMT) system and technology to solve 

unstructured data analysis problems



 

SGI Ultraviolet is latest in a popular line of 

“distributed shared memory”

 

machines

Possible Hardware Solutions: Analytics 
Machines

Slide 
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Possible Software Technologies 
from the SDM center

 
http://sdmcenter.lbl.gov
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Visualizing and Tuning I/O Access

This view shows the entire 28 Gbyte dataset as a 2D array of blocks, for three 
separate runs. Renderer is visualizing one variable out of five.

 

Red blocks were 
accessed. Access times in parenthesis.

Data is stored in the netCDF “record”

 

format, where 
variables are interleaved in file (36.0 sec). Adjusting 
MPI-IO parameters (right) resulted in significant I/O 
reduction (18.9 sec).

New PnetCDF large 
variable support stores 
data contiguously

 
(13.1 sec).

Original Pattern MPI-IO Tuning PnetCDF Enhancements



Collective I/O and Distributed Locks
Group-cyclic partitioning is an advanced technique for situations 

where many locks must be obtained during a single I/O operation 

(e.g. Lustre). Regions of the file are statically assigned to 

aggregators in a round-robin fashion, and aggregators are placed in 

groups of N, where N is the number of servers, minimizing number

 of extent locks requested.

 Performance is many times

 that of “even”

 

partitioning.

14Data and Co-Design



Searching Problems in Data Intensive Sciences



 

Find the HEP collision events with the most distinct signature of 
Quark Gluon Plasma



 

Find the ignition kernels in a combustion simulation


 

Track a layer of exploding supernova
These are not typical database searches:


 

Large high-dimensional data sets 
(1000 time steps X 1000 X 1000 X 1000 cells X 100 variables)



 

No modification of individual records during queries, i.e., 
append-only data



 

M-Dim queries: 500 < Temp < 1000 && CH3 > 10-4 && …


 

Large answers (hit thousands or millions of records)


 

Seek collective features such as regions of interest, histograms, 
etc.



 

Other application domains: 


 

real-time analysis of network intrusion attacks


 

fast tracking of combustion flame fronts over time


 

accelerating molecular docking in biology applications


 

query-driven visualization

15Data and Co-Design



FastBit: accelerating analysis of very large 
datasets

FastBit is an extremely efficient compressed bitmap indexing technology



 

Indexes and stores each column separately


 

Uses a compute-friendly compression techniques (patent 2004)


 

Improves search speed by 10x – 100x than best known bitmap indexing 
methods



 

Excels for high-dimensional data


 

Can search billion data values in seconds

Size: FastBit indexes are modest in size compared to well-known 
database indexes



 

On average about 1/3 of data volume compared to 3-4 times in common 
indexes (e.g. B-trees)

16Data and Co-Design



Query-Driven Visualization

Collaboration between SDM and VACET centers


 

Use FastBit indexes to efficiently select the most interesting data for visualization

Above example: laser wakefield particle accelerator simulation


 

VORPAL produces 2D and 3D simulations of particles in laser wakefield



 

Finding and tracking particles with large momentum is key to design the accelerator



 

Brute-force algorithm is quadratic (taking 5 minutes on 0.5 mil particles), FastBit time  is linear 
in the number of results (takes 0.3 s, 1000 X speedup)



ADaptable IO System (ADIOS)



 

Provide portable, fast, scalable, easy-to-use, 
metadata rich output


 

Change I/O method by changing XML file only



 

Allows plug-ins for different I/O implementations

Operate across multiple architectures and file 
systems


 

Blue Gene, Cray, IB-based clusters



 

Lustre, PVFS2, GPFS, Panasas, PNFS



 

Support many underlying file formats and 
interfaces


 

MPI-IO, POSIX, HDF5, netCDF, BP (binary-packed)



 

Facilitate switching underlying file formats to reach 
performance goals



 

Compensate for inefficiencies in the current 
I/O infrastructures

The goal of ADIOS is to create an easy and efficient I/O interface to 

hide the details from computational science applications:

18Data and Co-Design



Performance of I/O from the Pixe3D 
(MHD) fusion code using ADIOS
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visualize and compare shots 

Real-time Visualization and Analysis with a Dashboard



Example of In-Situ Analysis 
and Data Reduction

In situ analysis incorporates analysis routines into the simulation code. This technique allows 

analysis routines to operate on data while it is still in memory, potentially significantly reducing the 

I/O demands.

 
One way to take advantage of in situ techniques is to perform initial analysis for the purposes of 

data reduction.  With help from the application scientist to identify features of interest, we can 

compress data of less interest to the scientist, reducing I/O demands during simulation and further 

analysis steps.
The feature of interest in this case is the 
mixture fraction with an iso value of 0.2 
(white surface). Colored regions are a 
volume rendering of the HO2 variable 
(data courtesy J. Chen (SNL)).

By compressing data more aggressively 
the further it is from this surface, we can 
attain a compression ratio of 20-30x 
while still retaining full fidelity in the 
vicinity of the surface. 

C. Wang, H. Yu, and K.-L. Ma, “Application-driven compression for visualizing large-scale time-varying volume 
data”, IEEE Computer Graphics and Applications, 2009.
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In Situ Analysis through Data Staging

Use the staging nodes and create a workflow in the staging nodes
Allow the ability to generate online insights into the 260GB data being 

output from 16,384 compute cores in 40 seconds
Prepare data and indexes for exploratory analysis (external to 

exascale machine)

From F. Zheng, H. Abbasi, C. Docan, J. Lofstead, S. Klasky, Q. Liu, M. Parashar, N. Podhorszki, K. Schwan, M. 
Wolf, “PreDatA -

 

Preparatory Data Analytics on Peta-Scale Machines”, IPDPS 2010.

SortSort
BitmapBitmap

indexing

HistogramHistogram

2D Histogram2D Histogram

BP writerBP writer

Particle array

sorted array BP file

Index file

PlotterPlotter

PlotterPlotter
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Examples of Other Technologies

New computational data processing paradigms 



 

Hadoop, MapReduce, etc



 

HDFS 

Data-as-a-Service for end users



 

Enable interactivity

Provide consistent computational environment



 

Support rare but large computing load



 

Allow use of out of date OS/compilers (avoid re-validation of 

results)

…



Summary: Combining Software and 
Hardware into a Data-Side Analysis Facility

Impractical to move exabytes to end users


 

Minimize data movement



 

Employ specialized data analysis systems

Data-side analysis facility (exascale workshops)


 

Is near the data generation site



 

Have specialized hardware, e.g., John Hopkins’

 

Amdahl machine 



 

Have parallel analysis and visualization tools



 

Have workflow tools to compose “analysis pipelines”

 

by users



 

Reuse previously composed pipelines



 

Have data analysis experts



 

Provide training on data analysis techniques and tools

24Data and Co-Design



SUBTITLE HERE IF NECESSARY

Questions?
http://sdmcenter.lbl.gov
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