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The 4t Paradigm?

0 Maybe

0 The reality is that data
is becoming a much
larger part of science
and human society in
general

PARADIGM

DaTA-INTENSIVE SCIENTIFIC DISCOVERY
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Sciences Becoming Data Intensive

< Existing ability to generate science data is
already challenging our ability to store,
analyze, and archive.

» Some observational devices grow in
capability with Moore’s Law.

> Data sizes are growing exponentially.

< Petabyte (PB) data sets are becoming
common:

» Climate.: next IPCC estimates 10s of PBs

» Genome: JGI alone will have about 1 PB
this year and double each year

» Particle physics. LHC projects 16 PB / yr
> Astrophysics: LSST, others, estimate 5PB - - D
| yr
< Exascale HPC simulations will lead to T
s SUM
exascale datasets 3 EEE Cenmer
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Data Analysis Challenges: Complex

Process
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Data Analysis Challenges: Integration
Many sources, Different formats, Varying volumes

Simulation
Data
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Data Analysis Challenges: Verification

< Simulations now being used to make major

decisions, not just study phenomena

» Climate model CCSM 100 year predictions

» ASCEM - Subsurface simulations for environmental management
(DOE-EM)

» CCSI - Carbon Capture simulation initiative
» Simulations of combustion for new fuels and burners

< Understanding uncertainty is critical
> statistical methods for initial data space

> generates large amounts of data
<~Versioning and provenance of results

» make results traceable and repeatable
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Data Movement on the Exascale

< Users often need help moving large datasets

» Five requests recently to move 30+TB sized data sets between
NERSC and other facilities.

< Network connections are hampered by firewalls,
improperly configurations, and unexpected bottlenecks
» ~10 MB/sec if it worked

> More than 30 days to transfer data

< After network tuning, new dedicated tuned systems, file
system, client testing, and better management tool (ANL,
ORNL and NERSC DTNs), 200+MB/sec

» Just over 2 days to transfer data
< On the exascale

» Better management software on intelligent network e.g.,
ESNet/ANI

» Move as little data as possible
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Additional Data Ecosystem Challenges

< Data Analysis
» Collaborative data validation and verification
» Data processing to develop an enhanced dataset
» Support for new analysis capabilities

» Search based on data properties
<+ Data Management

» Ontology development

» Connecting publications resulting from data analysis to the
underlying data

< Tools
» Generate and process/analyze subsets

» Visualization support (e.g. data standards...)
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Possible Hardware Solutions: Flash Storage

<+ Memory per Flop decreasing

< Solid State Storage could fill the latency
gap
» High bandwidth, low-latency

< Flash Storage Testbeds

> ~10TB in NERSC Global File system (NGF) for y
metadata acceleration
Cache, O(MB)
> 16TB as local SSD in “Magellan” cloud test 10cycles
bed for data analytics, local read-only data, local Memory, 0(G8)
temp storage 100 cyces
Latency Gap
Disk, O(TB)

f3iii:: CENTER




Possible Hardware Solutions: Analytics
Machines

Architectures for data analytics

» With government support, Cray developed the eXtreme
MultiThreading (XMT) system and technology to solve
unstructured data analysis problems

» SGI Ultraviolet is latest in a popular line of

“distributed shared memory” machines

Parallel Betweenness Centrality Performance
SSCA2v2 Graph, K4approx 8

Cray XMT (16)
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Visualizing and Tuning I/O Access

This view shows the entire 28 Gbyte dataset as a 2D array of blocks, for three
separate runs. Renderer is visualizing one variable out of five. Red blocks were
accessed. Access times in parenthesis.

Original Pattern MPI-10 Tuning PnetCDF Enhancements
| |

Data is stored in the netCDF “record” format, where = New PnetCDF large
variables are interleaved in file (36.0 sec). Adjusting  variable support stores
MPI-10 parameters (right) resulted in significant I/O data contiguously.......
reduction (18.9 sec). (13.1 sec). =i SDM




Collective I/0 and Distributed Locks

Group-cyclic partitioning is an advanced technique for situations
where many locks must be obtained during a single 1/0 operation
(e.g. Lustre). Regions of the file are statically assigned to
aggregators in a round-robin fashion, and aggregators are placed in
groups of N, where N is the number of servers, minimizing number
of extent locks requested. S3D 1/0 on Lustre
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Searching Problems in Data Intensive Sciences

< Find the HEP collision events with the most distinct signature of
Quark Gluon Plasma

< Find the ignition kernels in a combustion simulation \
< Track a layer of exploding supernova

These are not typical database searches:

» Large high-dimensional data sets
(1000 time steps X 1000 X 1000 X 1000 cells X 100ariables)

» No modification of individual records during queries, i.e.
append-only data

> M-Dim queries: 500 < Temp < 1000 && CH3 > 104 && ...
» Large answers (hit thousands or millions of records)

» Seek collective features such as regions of interest, histograms-""_ '
etc. 3

< Other application domains:
» real-time analysis of network intrusion attacks
» fast tracking of combustion flame fronts over time
» accelerating molecular docking in biology applications
» query-driven visualization
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FastBit: accelerating analysis of very large
datasets

< FastBit Is an extremely efficient compressed bitmap indexing technology

» Indexes and stores each column separately

» Uses a compute-friendly compression techniques (patent 2004)

» Improves search speed by 10x — 100x than best known bitmap indexing
methods

» Excels for high-dimensional data
» Can search billion data values in seconds

< Size: FastBit indexes are modest in size compared to well-known
database indexes

» On average about 1/3 of data volume compared to 3-4 times in common
indexes (e.g. B-trees)

1%011111
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Query-Driven Visualization

Request Histograms

2D Histograms

— u.
>

Y
FastBit Context

A 2D Histograms

—
Focus
Define Condition Thresholds / Id's

_.._' Data Operator |=#
Selected Data | | ‘

> Pt |

Select and Trace

< Collaboration between SDM and VACET centers

» Use FastBit indexes to efficiently select the most interesting data for visualization

<+ Above example: laser wakefield particle accelerator simulation
» VORPAL produces 2D and 3D simulations of particles in laser wakefield
» Finding and tracking particles with large momentum is key to design the accelerator

» Brute-force algorithm is quadratic (taking 5 minutes on 0.5 mil particles), FastBit time is linear

in the number of results (takes 0.3 s, 1000 X speedup) CHH
s SOM
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ADaptable |0 System (ADIOS)

The goal of ADIOS is to create an easy and efficient I/O interface to
hide the details from computational science applications:

< Provide portable, fast, scalable, easy-to-use,
metadata rich output

» Change I/0 method by changing XML file only Soientific codes | External

> Allows plug-ins for different I/O implementations metadata
. . . (XML file)
~QOperate across multiple architectures and file
systems ____ADIOS API
Buffering Schedule Feedback
» Blue Gene, Cray, IB-based clusters o
Staging

» Lustre, PVFS2, GPFS, Panasas, PNFS

S SIEIZISIZEI2El£12]2
<« Support many underlying file formats and o225zl llz12]Z]|%
H - — O — - i = 9
interfaces SN I HEEE

o S22l lefz)s
> MPI-10, POSIX, HDF5, netCDF, BP (binary-packed) =1 ICAH EA

» Facilitate switching underlying file formats to reach

performance goals
«» Compensate for inefficiencies in the current Parallel and Distributed File System

/0 infrastructures
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Performa

nce of /0 from the Pixe3D

(MHD) fusion code using ADIOS

MW Adaptive Base
m MPI Base

™ Adaptive interference
m MPI Interference
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Real-time Visualization an
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Example of In-Situ Analysis
and Data Reduction

In situ analysis incorporates analysis routines into the simulation code. This technique allows
analysis routines to operate on data while it is still in memory, potentially significantly reducing the

I/0 demands.

One way to take advantage of in situ techniques is to perform initial analysis for the purposes of
data reduction. With help from the application scientist to identify features of interest, we can
compress data of less interest to the scientist, reducing I/O demands during simulation and further

analysis steps.
The feature of interest in this case is the
mixture fraction with an iso value of 0.2
(white surface). Colored regions are a
volume rendering of the HO2 variable
(data courtesy J. Chen (SNL)).

By compressing data more aggressively
the further it is from this surface, we can
attain a compression ratio of 20-30x
while still retaining full fidelity in the
vicinity of the surface.

C. Wang, H. Yu, and K.-L. Ma, “Application-driven compression for visualizing large-scale time-varying volume
data”, IEEE Computer Graphics and Applications, 2009.

EISDM
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In Situ Analysis through Data Staging

<+ Use the staging nodes and create a workflow in the staging nodes

< Allow the ability to generate online insights into the 260GB data being
output from 16,384 compute cores in 40 seconds

< Prepare data and indexes for exploratory analysis (external to

exascale machine) ’
BP file

sorted array .
BP writer j

Sort —

/
— ~. Bitmap j
Particle array indexin

o Indexfile

J Histogram H Plotter I k‘ W

2D Histogram Plotter

From F. Zheng, H. Abbasi, C. Docan, J. Lofstead, S. Klasky, Q. Liu, M. Parashar, N. Podhorszki, K. Schwan, M.
Wolf, “PreDatA - Preparatory Data Analytics on Peta-Scale Machines”, IPDPS 2010.
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Examples of Other Technologies

<+ New computational data processing paradigms
» Hadoop, MapReduce, etc
» HDFS

< Data-as-a-Service for end users

» Enable interactivity

<+ Provide consistent computational environment
» Support rare but large computing load

» Allow use of out of date OS/compilers (avoid re-validation of
resulits)

L (4
oo

L)
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Summary: Combining Software and
Hardware into a Data-Side Analysis Facility

< Impractical to move exabytes to end users

» Minimize data movement

» Employ specialized data analysis systems

<+ Data-side analysis facility (exascale workshops)
Is near the data generation site
Have specialized hardware, e.g., John Hopkins’ Amdahl machine

Have parallel analysis and visualization tools

Reuse previously composed pipelines

>
>
>
» Have workflow tools to compose “analysis pipelines” by users
>
» Have data analysis experts

>

Provide training on data analysis techniques and tools
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