
Programming the X-Stack: 
Challenges and Opportunities

Barbara Chapman
University of Houston

High Performance Computing and Tools Group
http://www.cs.uh.edu/~hpctools

Fall Creek Falls Conference, 
Gatlinburg
September 16, 2011

Agenda

 Hardware Revolution 

 Programming at Exascale

 Runtime Support

 We Need Tools 

Petascale is a Global Reality
 K computer

 68,544 SPARC64 VIIIfx processors, Tofu interconnect, Linux-
based enhanced OS, produced by Fujitsu

 Tianhe-1A
 7,168 Fermi GPUs and 14,336 CPUs; it would require more than 

50,000 CPUs and twice as much floor space to deliver the same 
performance using CPUs alone. 

 Jaguar
 224,256 x86-based AMD Opteron processor cores, Each 

compute node features two Opterons with 12 cores and 16GB of 
shared memory

 Nebulae 
 Nvidia Tesla 4640 GPUs, Intel X5650-based 9280 CPUs

 Tsubame
 4200 GPUs

Top 10 Energy-efficient Supercomputers (June 2011)

Many More Cores

 Biggest change is within the node

 Some full-featured cores

 Many low-power cores
 Technology rapidly evolving, will be integrated

 Easiest way to get power efficiency and high performance

 Specialized cores

 Global memory

 Low amount of memory per core

 Coherency domains, networks on chip

Av
R

M®

Co
rte

™

L3/L4 Interconnect

C64x+
™ DSP 

and 
video 
accele
rators 
(3525/
3530 
only)

Peripherals

Program/Data Storage

System

Serial Interfaces

Displ
ay 

Subs
yste

m

Connectivity

Cam
era 
I/F

POWE
RVR 

SGX™
Graph

ics
(3515/
3530 
only)

Programming Models? Today’s Scenario

// Run one OpenMP thread per device per MPI node 
#pragma omp parallel num_threads(devCount) if (initDevice())
{

// Block and grid dimensions 
dim3 dimBlock(12,12);
kernel<<<1,dimBlock>>>(); 
cudaThreadExit();

} 
else 
{

printf("Device error on %s\n",processor_name);
} 

MPI_Finalize(); 
return 0;

}

www.cse.buffalo.edu/faculty/miller/Courses/CSE710/heavner.pdf



Exascale Programming Models

 Programming models is biggest “worry factor” for 
application developers

 MPI-everywhere model no longer viable
 Hybrid MPI+OpenMP already in use in HPC

 Need to explore new approaches, adapt existing APIs
 Exascale models and their implementation must take 

account of:
 Scale of parallelism, levels of parallelism
 Heterogeneous cores
 Potential coherency domains
 Need to reduce power consumption
 Resource allocation and management
 Legacy code, libraries; interoperability 
 Support for resilience, verification

IESP Programming Models Agenda

 Alternative R&D strategies

 Uniform vs. hybrid programming models

 MPI 7.0, OpenMP 5.0, or revolutionary approaches

 Domain specific vs. general PMs

 Recommended research agenda

 Explore enhancements to existing models

 Revolutionary approach with interoperability to 
existing models

www.exascale.org

IESP Programming Models

Proposed timeline

Interoperability 
among existing 
programming 

models

Fault-tolerant MPI

Standard programming 
model for 

heterogeneous nodes 

System-wide high-level 
programming model 

Exascale programming 
models implemented

Exascale programming 
model(s) adopted

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Y
o
u
r M

etric

Candidate exascale 
programming models 

defined

Delivering The Programming Model

 Between nodes, MPI with enhancements might work
 Needs more help for fault tolerance and improved scalability

 Within nodes, too many models, no complete solution
 OpenMP, PGAS, CUDA and OpenCL all potential starting point

 In layered system, migrate code to most appropriate 
level, develop at most suitable level
 Incremental path for existing codes

 Timing of programming model delivery is critical
 Must be in place when machines arrive

 Needed earlier for development of new codes

2009/05/21

DOE Workshop’s Reverse Timeline

Work on programming models must begin now!

A Layered Programming Approach

Efficient, Deterministic, Declarative, Restrictive Expressiveness 
based language (DSL maybe?)

Efficient, Deterministic, Declarative, Restrictive Expressiveness 
based language (DSL maybe?)

Parallel Programming Languages (OpenMP, PGAS, APGAS)Parallel Programming Languages (OpenMP, PGAS, APGAS)

Low-level APIs (MPI, pthreads, OpenCL, Verilog)Low-level APIs (MPI, pthreads, OpenCL, Verilog)

Machine code, AssemblyMachine code, Assembly

Computational 
Science

Computational 
Science

Data 
Informatics

Data 
Informatics

Information 
Technology
Information 
Technology

Very-high 
level

High level

Low-level 

Very
low-level

Applications

Heterogeneous 
Hardware



Programming Model Major Requirements

 Portable expression of scalable parallelism
 Across exascale platforms and intermediate systems

 Uniformity
 One model across variety of resources

 Across node, across machine?

 Locality
 For performance and power

 At all levels of hierarchy

 Asynchrony
 Minimize delays

 But trade-off with locality

generic
core

generic
core

Speciali
zed core

Specializ
ed core

Evolutionary approach enhances/adapts current APIs (esp. MPI, 
OpenMP, PGAS and APGAS languages)

OpenMP Evolution Toward Exascale 

 OpenMP language committee is actively working toward 
the expression of locality and heterogeneity
 And to improve task model to enhance asynchrony

 How to identify code that should 
run on a certain kind of core?

 How to share data between host 
cores and other devices?

 How to minimize data motion?

 How to support diversity of cores?

generic
core

generic
core

Special
ized 
core

Special
ized 
core

Control and 
data transfers

Work is already beginning to enhance variety of models and/or 
extend their range of applicability

OpenMP 4.0 Attempts To Target Range of 
Acceleration Configurations

 Dedicated hardware for specific function(s)
 Attached to a master processor

 Multiple types or levels of parallelism

 Process level, thread level, ILP/SIMD

 May not support a full C/C++ or Fortran compiler
 May lack stack or interrupts, may limit control flow, types

Master Master

DSPDSP
DSPDSP
DSPDSP
DSPDSP
ACCACC

Accelerator
w/ nonstd

Programming model

Master

Massively Parallel Accelerator

Master

ACCACC

OpenMP Locality Research 
Locations := Affinity Regions

 Coordinate data layout, work
 Collection of locations represent 

execution environment 

 Map data, threads to a location; 
distribute data across locations

 Align computations with data’s 
location, or map them

 Location inherited unless task 
explicitly migrated

Research on Locality in OpenMP
• Implementation in OpenUH compiler shows good performance 

– Eliminates unnecessary thread migrations; 
– Maximizes locality of data operations;
– Affinity support for heterogeneous systems.

int main(int argc, char * argv[])
{

double A[N];
…

#pragma omp distribute(BLOCK: A) \
location(0:1)

…

#pragma omp parallel for OnLoc(A[i])
for(i=0;i<N;i++){

foo(A[i])
}

…
}

Enabling Asynchronous Computation

 Directed acyclic graph (DAG): 
where each node represents a 
task and the edges represents 
inter-task dependencies

 A task can begin execution only if 
all its predecessors have 
completed execution

 Should user express this directly?
 Compiler can generate tasks and 

graph (at least partially) to 
enhance performance

 What is “right” size of task?



OpenMP Research: Enhancing Tasks for 
Asynchrony

 Implicitly create DAG by specifying data input 
and output related to tasks
 A task that produces data may need to wait for 

any previous child task that reads or writes the 
same locations

 A task that consumes data may need to wait for 
any previous child task that writes the same 
locations

 Task weights (priorities)

 Groups of tasks and synchronization on groups

Asynchronous OpenMP Execution

T.-H. Weng, B. Chapman: Implementing OpenMP Using Dataflow Execution 
Model for Data Locality and Efficient Parallel Execution. Proc. HIPS-7, 2002

OpenUH “All Task” Execution Model

 Replace fork-join with data flow execution 
model
 Reduce synchronization, increase concurrency

 Compiler transforms OpenMP code to a collection of 
tasks and a task graph.

 Task graph represents dependences between tasks

 Array region analysis; data read/write requests for 
the data the task needs.

 Map tasks to compute resources through task 
characterization using cost modeling

 Enable locality-aware scheduling and load-
balancing

OpenMP 
Runtime Library

OpenMP 
Runtime Library

Feedback Optimizations

IPA
(Inter Procedural Analyzer)

IPA
(Inter Procedural Analyzer)

Source code w/ 
OpenMP directives

Source code w/ 
OpenMP directives

Source code with 
runtime library calls
Source code with 

runtime library calls

Linkin
g

CG
(Itanium, Opteron, Pentium)

CG
(Itanium, Opteron, Pentium)

WOPT
(global scalar optimizer)

WOPT
(global scalar optimizer)

Object filesObject files

LOWER_MP
(Transformation of OpenMP )

LOWER_MP
(Transformation of OpenMP )

A Native
Compiler
A Native
Compiler

ExecutablesExecutables

FRONTENDS
(C/C++, Fortran 90, OpenMP)

FRONTENDS
(C/C++, Fortran 90, OpenMP)

O
p

en
64

 C
o

m
p

ile
r 

in
fr

as
tr

u
ct

u
re LNO

(Loop Nest Optimizer)
LNO

(Loop Nest Optimizer)

OMP_PRELOWER
(Preprocess OpenMP )

OMP_PRELOWER
(Preprocess OpenMP )

WHIRL2C & WHIRL2F
(IR-to-source option )

WHIRL2C & WHIRL2F
(IR-to-source option )

Dynamic
Feedback for
Compiler
Optimizations

Runtime Feedback 
Information

Static Feedback Information

Free compute resources

Runtime Is Critical for Performance

 Compiler’s runtime support must 
 Adapt workload and data to environment

 Respond to changes caused by application 
characteristics, power, faults,  system noise

 Dynamically and continuously

 Provide feedback on application behavior

 Uniform support for multiple programming 
models on heterogeneous platforms
 Facilitate interoperability, (dynamic) mapping 

Compiler’s Runtime Must Adapt

 Light-weight performance data collection

 Dynamic optimization

 Interoperate with external tools and schedulers

 Need very low-level interfaces to facilitate its implementation

OpenMP 
Runtime 
Library

OpenMP 
Runtime 
Library

Collector ToolCollector Tool

OpenMP AppOpenMP App

Event 
callback

Registe
r
event

Multicore Association is defining interfaces



Interactions Across System Stack

 More interactions needed to share information
 To support application development and tuning
 Increase execution efficiency
 Runtime needs application metadata, compiler 

analyses, architectural information, smart monitoring
 Application developer needs feedback
 Selective information-gathering in dynamic optimizer

IPA: Inlining Analysis
/ Selective Instrumentation

Instrumentation Phase

Source-to-Source
Transformations

Optimization Logs

Oscar Hernandez, Haoqiang Jin, Barbara Chapman. Compiler Support for Efficient Instrumentation. In Parallel Computing: 
Architectures, Algorithms and Applications , C. Bischof, M. B¨ucker, P. Gibbon, G.R. Joubert, T. Lippert, B. Mohr, F. Peters 
(Eds.), NIC Series, Vol. 38, ISBN 978-3-9810843-4-4, pp. 661-668, 2007.

Code Migration Tools

 From structural information to 
sophisticated adaptation support

 Changes in data structures, large-
grain and fine-grained control flow 

 Variety of transformations for 
kernel granularity and memory 
optimization

Red: High similarity
Blue: Low similarity

Summary

 Projected exascale hardware requires us to 
rethink programming model and its execution 
support
 Intra-node concurrency is fine-grained, heterogeneous

 Memory is scarce and power is expensive
 Data locality has never been so important

 Opportunity for new programming models
 Runtime continues to grow in importance for 

ensuring good performance
 Need to migrate large apps: Where are the tools?

Priority Research Direction: Programming Models (PM)

Key challenges

Multiple PMs: uniform, hybrid; high‐level; new, PGAS, 
MPI, OpenMP, other; application‐area specific PMs
Expressive ways to describe parallelism and locality in 
PMs
Fault tolerance/awareness at PM level
Implementation (compiler, runtime) technology
Application development tools

Extreme scale of parallelism (Exascale and beyond)

Diversity, heterogeneity  of architectures/hardware

Complex memory hierarchy

Productivity of the programmer vs. performance

Interoperability (with legacy code) 

Enabler of application development, library 
creation on new systems

Productive programming models are essential for 
uptake of exascale systems

Enhancements to existing models may have 
impact in a few years
Implementation and support tools needed for 
this to have major Impact

Summary of research direction

Potential impact on software component
Potential impact on usability, capability, 

and breadth of community

Increase Locality, Reduce Power 

void foo(double A[], double B[], double C[], int nrows, int ncols) 
{
#pragma omp data_region acc_copyout(C), host_shared(A,B)
{

#pragma omp acc_region
for (int i=0; i < nrows; ++i)

for (int j=0; j < ncols; j += NLANES)
for (int k=0; k < NLANES; ++k) {

int index = (i * ncols) + j + k;
C[index] = A[index] + B[index];

} // end accelerator region
print2d(A,nrows,ncols);
print2d(B,nrows,ncols);
Transpose(C); // calls function w/another accelerator construct

} // end data_region
print2d(C, nrows, ncols);

}
void Transpose(double X[], int nrows, int ncols) {

#pragma omp acc_region acc_copy(X), acc_present(X)
{ … }

}

Automating the Tuning Process

K. Huck, O. Hernandez, V. Bui, S. Chandrasekaran, B. Chapman, A. Malony, L. McInnes, B. Norris. 
Capturing Performance Knowledge for Automated Analysis. Supercomputing 2008



Lessons Learned from Prior Work

 Only a tight integration of application-
provided meta-data and architecture 
description can let the runtime system take 
appropriate decisions

 Good analysis of thread affinity and data 
locality 

 Task reordering

 H/W aware selective information gathering

Runtime needs to be integrated with OS


