
Programming the X-Stack:
Challenges and Opportunities

Barbara Chapman
University of Houston

High Performance Computing and Tools Group
http://www.cs.uh.edu/~hpctools

Fall Creek Falls Conference,
Gatlinburg
September 16, 2011

Agenda

 Hardware Revolution

 Programming at Exascale

 Runtime Support

 We Need Tools

Petascale is a Global Reality
 K computer

 68,544 SPARC64 VIIIfx processors, Tofu interconnect, Linux-
based enhanced OS, produced by Fujitsu

 Tianhe-1A
 7,168 Fermi GPUs and 14,336 CPUs; it would require more than

50,000 CPUs and twice as much floor space to deliver the same
performance using CPUs alone.

 Jaguar
 224,256 x86-based AMD Opteron processor cores, Each

compute node features two Opterons with 12 cores and 16GB of
shared memory

 Nebulae
 Nvidia Tesla 4640 GPUs, Intel X5650-based 9280 CPUs

 Tsubame
 4200 GPUs

Top 10 Energy-efficient Supercomputers (June 2011)

Many More Cores

 Biggest change is within the node

 Some full-featured cores

 Many low-power cores
 Technology rapidly evolving, will be integrated

 Easiest way to get power efficiency and high performance

 Specialized cores

 Global memory

 Low amount of memory per core

 Coherency domains, networks on chip

Av
R

M®

Co
rte

™

L3/L4 Interconnect

C64x+
™ DSP

and
video
accele
rators
(3525/
3530
only)

Peripherals

Program/Data Storage

System

Serial Interfaces

Displ
ay

Subs
yste

m

Connectivity

Cam
era
I/F

POWE
RVR

SGX™
Graph

ics
(3515/
3530
only)

Programming Models? Today’s Scenario

// Run one OpenMP thread per device per MPI node
#pragma omp parallel num_threads(devCount) if (initDevice())
{

// Block and grid dimensions
dim3 dimBlock(12,12);
kernel<<<1,dimBlock>>>();
cudaThreadExit();

}
else
{

printf("Device error on %s\n",processor_name);
}

MPI_Finalize();
return 0;

}

www.cse.buffalo.edu/faculty/miller/Courses/CSE710/heavner.pdf

Exascale Programming Models

 Programming models is biggest “worry factor” for
application developers

 MPI-everywhere model no longer viable
 Hybrid MPI+OpenMP already in use in HPC

 Need to explore new approaches, adapt existing APIs
 Exascale models and their implementation must take

account of:
 Scale of parallelism, levels of parallelism
 Heterogeneous cores
 Potential coherency domains
 Need to reduce power consumption
 Resource allocation and management
 Legacy code, libraries; interoperability
 Support for resilience, verification

IESP Programming Models Agenda

 Alternative R&D strategies

 Uniform vs. hybrid programming models

 MPI 7.0, OpenMP 5.0, or revolutionary approaches

 Domain specific vs. general PMs

 Recommended research agenda

 Explore enhancements to existing models

 Revolutionary approach with interoperability to
existing models

www.exascale.org

IESP Programming Models

Proposed timeline

Interoperability
among existing
programming

models

Fault-tolerant MPI

Standard programming
model for

heterogeneous nodes

System-wide high-level
programming model

Exascale programming
models implemented

Exascale programming
model(s) adopted

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Y
o
u
r M

etric

Candidate exascale
programming models

defined

Delivering The Programming Model

 Between nodes, MPI with enhancements might work
 Needs more help for fault tolerance and improved scalability

 Within nodes, too many models, no complete solution
 OpenMP, PGAS, CUDA and OpenCL all potential starting point

 In layered system, migrate code to most appropriate
level, develop at most suitable level
 Incremental path for existing codes

 Timing of programming model delivery is critical
 Must be in place when machines arrive

 Needed earlier for development of new codes

2009/05/21

DOE Workshop’s Reverse Timeline

Work on programming models must begin now!

A Layered Programming Approach

Efficient, Deterministic, Declarative, Restrictive Expressiveness
based language (DSL maybe?)

Efficient, Deterministic, Declarative, Restrictive Expressiveness
based language (DSL maybe?)

Parallel Programming Languages (OpenMP, PGAS, APGAS)Parallel Programming Languages (OpenMP, PGAS, APGAS)

Low-level APIs (MPI, pthreads, OpenCL, Verilog)Low-level APIs (MPI, pthreads, OpenCL, Verilog)

Machine code, AssemblyMachine code, Assembly

Computational
Science

Computational
Science

Data
Informatics

Data
Informatics

Information
Technology
Information
Technology

Very-high
level

High level

Low-level

Very
low-level

Applications

Heterogeneous
Hardware

Programming Model Major Requirements

 Portable expression of scalable parallelism
 Across exascale platforms and intermediate systems

 Uniformity
 One model across variety of resources

 Across node, across machine?

 Locality
 For performance and power

 At all levels of hierarchy

 Asynchrony
 Minimize delays

 But trade-off with locality

generic
core

generic
core

Speciali
zed core

Specializ
ed core

Evolutionary approach enhances/adapts current APIs (esp. MPI,
OpenMP, PGAS and APGAS languages)

OpenMP Evolution Toward Exascale

 OpenMP language committee is actively working toward
the expression of locality and heterogeneity
 And to improve task model to enhance asynchrony

 How to identify code that should
run on a certain kind of core?

 How to share data between host
cores and other devices?

 How to minimize data motion?

 How to support diversity of cores?

generic
core

generic
core

Special
ized
core

Special
ized
core

Control and
data transfers

Work is already beginning to enhance variety of models and/or
extend their range of applicability

OpenMP 4.0 Attempts To Target Range of
Acceleration Configurations

 Dedicated hardware for specific function(s)
 Attached to a master processor

 Multiple types or levels of parallelism

 Process level, thread level, ILP/SIMD

 May not support a full C/C++ or Fortran compiler
 May lack stack or interrupts, may limit control flow, types

Master Master

DSPDSP
DSPDSP
DSPDSP
DSPDSP
ACCACC

Accelerator
w/ nonstd

Programming model

Master

Massively Parallel Accelerator

Master

ACCACC

OpenMP Locality Research
Locations := Affinity Regions

 Coordinate data layout, work
 Collection of locations represent

execution environment

 Map data, threads to a location;
distribute data across locations

 Align computations with data’s
location, or map them

 Location inherited unless task
explicitly migrated

Research on Locality in OpenMP
• Implementation in OpenUH compiler shows good performance

– Eliminates unnecessary thread migrations;
– Maximizes locality of data operations;
– Affinity support for heterogeneous systems.

int main(int argc, char * argv[])
{

double A[N];
…

#pragma omp distribute(BLOCK: A) \
location(0:1)

…

#pragma omp parallel for OnLoc(A[i])
for(i=0;i<N;i++){

foo(A[i])
}

…
}

Enabling Asynchronous Computation

 Directed acyclic graph (DAG):
where each node represents a
task and the edges represents
inter-task dependencies

 A task can begin execution only if
all its predecessors have
completed execution

 Should user express this directly?
 Compiler can generate tasks and

graph (at least partially) to
enhance performance

 What is “right” size of task?

OpenMP Research: Enhancing Tasks for
Asynchrony

 Implicitly create DAG by specifying data input
and output related to tasks
 A task that produces data may need to wait for

any previous child task that reads or writes the
same locations

 A task that consumes data may need to wait for
any previous child task that writes the same
locations

 Task weights (priorities)

 Groups of tasks and synchronization on groups

Asynchronous OpenMP Execution

T.-H. Weng, B. Chapman: Implementing OpenMP Using Dataflow Execution
Model for Data Locality and Efficient Parallel Execution. Proc. HIPS-7, 2002

OpenUH “All Task” Execution Model

 Replace fork-join with data flow execution
model
 Reduce synchronization, increase concurrency

 Compiler transforms OpenMP code to a collection of
tasks and a task graph.

 Task graph represents dependences between tasks

 Array region analysis; data read/write requests for
the data the task needs.

 Map tasks to compute resources through task
characterization using cost modeling

 Enable locality-aware scheduling and load-
balancing

OpenMP
Runtime Library

OpenMP
Runtime Library

Feedback Optimizations

IPA
(Inter Procedural Analyzer)

IPA
(Inter Procedural Analyzer)

Source code w/
OpenMP directives

Source code w/
OpenMP directives

Source code with
runtime library calls
Source code with

runtime library calls

Linkin
g

CG
(Itanium, Opteron, Pentium)

CG
(Itanium, Opteron, Pentium)

WOPT
(global scalar optimizer)

WOPT
(global scalar optimizer)

Object filesObject files

LOWER_MP
(Transformation of OpenMP)

LOWER_MP
(Transformation of OpenMP)

A Native
Compiler
A Native
Compiler

ExecutablesExecutables

FRONTENDS
(C/C++, Fortran 90, OpenMP)

FRONTENDS
(C/C++, Fortran 90, OpenMP)

O
p

en
64

 C
o

m
p

ile
r

in
fr

as
tr

u
ct

u
re LNO

(Loop Nest Optimizer)
LNO

(Loop Nest Optimizer)

OMP_PRELOWER
(Preprocess OpenMP)

OMP_PRELOWER
(Preprocess OpenMP)

WHIRL2C & WHIRL2F
(IR-to-source option)

WHIRL2C & WHIRL2F
(IR-to-source option)

Dynamic
Feedback for
Compiler
Optimizations

Runtime Feedback
Information

Static Feedback Information

Free compute resources

Runtime Is Critical for Performance

 Compiler’s runtime support must
 Adapt workload and data to environment

 Respond to changes caused by application
characteristics, power, faults, system noise

 Dynamically and continuously

 Provide feedback on application behavior

 Uniform support for multiple programming
models on heterogeneous platforms
 Facilitate interoperability, (dynamic) mapping

Compiler’s Runtime Must Adapt

 Light-weight performance data collection

 Dynamic optimization

 Interoperate with external tools and schedulers

 Need very low-level interfaces to facilitate its implementation

OpenMP
Runtime
Library

OpenMP
Runtime
Library

Collector ToolCollector Tool

OpenMP AppOpenMP App

Event
callback

Registe
r
event

Multicore Association is defining interfaces

Interactions Across System Stack

 More interactions needed to share information
 To support application development and tuning
 Increase execution efficiency
 Runtime needs application metadata, compiler

analyses, architectural information, smart monitoring
 Application developer needs feedback
 Selective information-gathering in dynamic optimizer

IPA: Inlining Analysis
/ Selective Instrumentation

Instrumentation Phase

Source-to-Source
Transformations

Optimization Logs

Oscar Hernandez, Haoqiang Jin, Barbara Chapman. Compiler Support for Efficient Instrumentation. In Parallel Computing:
Architectures, Algorithms and Applications , C. Bischof, M. B¨ucker, P. Gibbon, G.R. Joubert, T. Lippert, B. Mohr, F. Peters
(Eds.), NIC Series, Vol. 38, ISBN 978-3-9810843-4-4, pp. 661-668, 2007.

Code Migration Tools

 From structural information to
sophisticated adaptation support

 Changes in data structures, large-
grain and fine-grained control flow

 Variety of transformations for
kernel granularity and memory
optimization

Red: High similarity
Blue: Low similarity

Summary

 Projected exascale hardware requires us to
rethink programming model and its execution
support
 Intra-node concurrency is fine-grained, heterogeneous

 Memory is scarce and power is expensive
 Data locality has never been so important

 Opportunity for new programming models
 Runtime continues to grow in importance for

ensuring good performance
 Need to migrate large apps: Where are the tools?

Priority Research Direction: Programming Models (PM)

Key challenges

Multiple PMs: uniform, hybrid; high‐level; new, PGAS,
MPI, OpenMP, other; application‐area specific PMs
Expressive ways to describe parallelism and locality in
PMs
Fault tolerance/awareness at PM level
Implementation (compiler, runtime) technology
Application development tools

Extreme scale of parallelism (Exascale and beyond)

Diversity, heterogeneity of architectures/hardware

Complex memory hierarchy

Productivity of the programmer vs. performance

Interoperability (with legacy code)

Enabler of application development, library
creation on new systems

Productive programming models are essential for
uptake of exascale systems

Enhancements to existing models may have
impact in a few years
Implementation and support tools needed for
this to have major Impact

Summary of research direction

Potential impact on software component
Potential impact on usability, capability,

and breadth of community

Increase Locality, Reduce Power

void foo(double A[], double B[], double C[], int nrows, int ncols)
{
#pragma omp data_region acc_copyout(C), host_shared(A,B)
{

#pragma omp acc_region
for (int i=0; i < nrows; ++i)

for (int j=0; j < ncols; j += NLANES)
for (int k=0; k < NLANES; ++k) {

int index = (i * ncols) + j + k;
C[index] = A[index] + B[index];

} // end accelerator region
print2d(A,nrows,ncols);
print2d(B,nrows,ncols);
Transpose(C); // calls function w/another accelerator construct

} // end data_region
print2d(C, nrows, ncols);

}
void Transpose(double X[], int nrows, int ncols) {

#pragma omp acc_region acc_copy(X), acc_present(X)
{ … }

}

Automating the Tuning Process

K. Huck, O. Hernandez, V. Bui, S. Chandrasekaran, B. Chapman, A. Malony, L. McInnes, B. Norris.
Capturing Performance Knowledge for Automated Analysis. Supercomputing 2008

Lessons Learned from Prior Work

 Only a tight integration of application-
provided meta-data and architecture
description can let the runtime system take
appropriate decisions

 Good analysis of thread affinity and data
locality

 Task reordering

 H/W aware selective information gathering

Runtime needs to be integrated with OS

