
Preparing Applications for Sustained
Petascale Performance

Robert Fiedler, Technical Program Mgr.,
NCSA Blue Waters Project

Outline

•  Blue Waters status
•  Case studies on improving application scalability

•  MILC
•  NAMD
•  DNS

•  Visualization for tornado simulations
•  Improving application resilience

2

Blue Waters

•  Project expected to continue on schedule with
alternate system & vendor
•  Production next Summer

•  Alternate system will meet Science Team’s needs
•  Many fast, general-purpose CPUs
•  High speed, low latency interconnect
•  Ample memory, disk space, I/O speed, archive

capacity, external bandwidth

3

Case Studies in Improving Applications

•  Petascale benchmark problems
•  MILC – lattice quantum chromodynamics
•  DNS – Turbulence
•  NAMD – molecular dynamics

4

MILC – Lattice QCD

•  T_total = T_comp + T_halo + T_AllReduce + T_io
•  5 key phases including CG sparse linear solver

•  Kernel: complex 3x3 matrix times 3x1 vector
•  Small per-core lattice, typically fits in L3 cache

•  Halo exchanges for 4D lattice
•  Small messages
•  Too small for significant overlap with computation

•  CG calls AllReduce 1000s of times per step
•  Sensitive to jitter

5

MILC
•  Performance model developed at NCSA

•  Details in Hoefler, Gottlieb: “Parallel Zero-Copy
Algorithms for Fast Fourier Transform and
Conjugate Gradient using MPI Datatypes”

•  Sequential performance based on actual HW
•  Takes into account per-core data & cache sizes

•  Communication overhead
•  On-node vs. off node
•  Mapping for specific interconnect, congestion
•  Pt to pt, collectives, message sizes & counts

6

MILC

7

•  Communication overhead as function of per-core lattice size
•  Message pack/unpack is 10-15% of run time

MILC

•  Significant amount of time spent gathering,
packing, and unpacking message buffers
•  User-defined data types can minimize copying by

gathering and sending as data stream
•  Model predicts savings of 10-15%

•  Get 11% on some systems
•  Note: some MPI implementations have poorly

optimized user-defined data types

8

MILC (cont’d)

•  Additional optimizations & considerations
•  SIMD-ize matrix-matrix and matrix-vector ops

•  ~25% overall speedup realized on some systems
•  Careful placement of tasks on processors crucial

•  On 3D torus, distribute 4th dimension on-node
•  Resource mgr needs topology awareness
•  Sensitive to interspersed IO nodes, etc.
•  Interference from other jobs impacts run times

9

NAMD
•  Molecular Dynamics
•  Forces and decomposition

•  Bonded, non-bonded, long-range electrostatic
•  Charm++ treats tasks as user-level threads

•  Many tasks per core – virtualized
•  Cheap to migrate, sophisticated load balancing

•  Asynchronous execution
•  Tasks execute when their data is available
•  Automatic overlap of communication & comp

•  Domain decomposition plus task parallelism
10

NAMD

11

NAMD
•  Rework entire toolchain to support 100M atoms

•  Initialize using parallel IO
•  Reduce memory footprint

•  Replicate read-only data only once per SMP
•  Exploit shared memory in Charm++ on jaguar

•  Utilize low-level communication libs (uGNI)
•  Assign one communication thread per SMP
•  Pin to core 0, which gets most OS tasks
•  Excellent scaling on jaguar (see plot)
•  PME inherently harder to scale – 3D FFTs

12

NAMD Strong Scaling on Jaguar

6000

24000

96000

6000 12000 24000 48000 96000 192000

Sp
ee

du
p

#cores

Ideal PME cutoff w/ barrier cutoff w/o barrier

•  100M atom system
•  Barrier in code required for pressure control
•  Exploring ways to improve PME scalability

13

NAMD
•  Reference: Mei, Sun, Zhang, Bohm, Kale
“Enabling and Scaling Biomolecular Simulations of
100 Million Atoms on Petascale Machines with a
Multicore-optimized Message-driven Runtime”
•  Paper to be presented at SC11

14

DNS

•  Describing collaborative work by:
•  Dr. Jeongnim Kim, NCSA/Blue Waters
•  P.-K. Yeung’s Science Team (GA Tech, U. TX

Austin, etc.)
•  Dmitry Pekurovsky (SDSC)

15

DNS – Direct Numerical Simulation
•  Homogeneous incompressible turbulence
•  Pseudo-spectral method
•  Explicit time stepping
•  Run times dominated by 3D FFTs at scale

•  All-to-All communication patterns
•  1D slab and 2D pencil decompositions often used
•  Other applications also use 3D FFTs

•  Coulomb potential for MD, e.g., NAMD, LAMMPS …
•  Electronic structure methods, e.g., PARATEC, Qbox …
•  Plasma physics (UPIC)

16

Decomposition of N-Cubed Grid Over np Cores

17

slab pencil cube

At petascale, ~ 200k cores

3D FFT

18

•  Successive 1D FFTs in each dimension
•  Task needs all points across the domain for efficient execution
•  For 2D pencil decomposition, must transpose 3D arrays twice

Pencil distribution using MPI: P3DFFT*

19

 Array syntax in C convention.
* P3DFFT library, http://code.google.com/p/p3dfft/, D. Pekurovsky, SDSC

 MPI tasks with

•  Can exploit efficient 1D FFT on N elements of
stride 1 by FFT libraries, e.g., ESSL, FFTW

•  But, need to transpose the pencils twice

 communicator groups (YZ slabs) of tasks
 communicator groups (XY slabs) of tasks

slabs

Two-Level Decomposition (Sheet on Node)

20

•  Pencil decomposition has more tasks and
communication than slab decompostion

•  SMP nodes will have many cores and lots of
memory on Blue Waters

•  Possible to fit a sheet on an SMP node
•  Can do 2D FFTs on an SMP

•  Leverage efficient threaded 2D FFT libs
•  Eliminates interconnect traffic for these

dimensions
•  Same communication as slab decomp, but

allows factor of (cores per SMP) more tasks

DNS – Additional Optimizations

•  Overlap communication with computation
•  Transform 3 components independently
•  Can overlap computation for 2nd and 3rd

component with comm for 1st and 2nd, resp.
•  Finer grained overlap (grid line-wise) also possible

•  Cylindrical cutoff radius in Fourier space
•  Omits communication for unneeded data (50%!)
•  Load balanced by distributing required grid lines

21

Visualization for Tornado Simulations
•  Analysis by Dr. B. David Semararo, NCSA
•  Code: CM1
•  Prof. Bob Wilhelmson leads Science Team

22

Visualization for Tornado Simulations

•  Data volume & time constraints
•  Simulation dumps 2 TB snapshot every 100 sec
•  Want image production to keep up

•  Scenarios
•  Use external cluster
•  Use shared file system to move data to viz. cluster
•  Use resources in same interconnect fabric
•  Use shared memory on SMPs running simulation

•  Estimate benefit of accelerators

23

The Visualization Process
Geometry

Data

Observed

Simulation

Transform Rendering

File System or Memory

To display or image store

Change Data Selection

Change Transformation

Visualization Pipeline

24

The Visualization Process

•  Transformations take data to geometry
•  Visualization Algorithms – isosurface, slice,

threshold, pseudocolor, streamline, etc.
•  Data Filters – subsampling, probing, scalar and

vector operations….
•  Rendering takes geometry to images

•  Texture application, lighting calculations, viewing
calculations…

•  Raster scan or ray trace
•  GPU (hardware accel), CPU (software render)

25

Pipeline Component Times – Strong Scaling

6.8 M triangles - 3840x2160

0
2
4
6
8

10
12
14
16

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

12
80

15
36

17
92

18
00

Cores

Ti
m

e

Composite
Render
Contour
IO

26

Key Observations

•  Compositing images does not scale well
•  Sweet spot at about 256 cores for this image size

on POWER5+
•  For parallel image generation, rendering takes a

relatively small fraction of run time
•  True even if rendering in software
•  Benefit from GPUs may be quite limited
•  Should compare timings for each stage in pipeline

27

Where to Perform Visualization in 100 Sec?
1.  Move data to local cluster

•  Best available network bandwidth ~ 0.5 GB/s
•  2 TB would take 4000 sec (40X too slow!)

2.  Use file system to move data to remote cluster
•  Excellent throughput would be ~ 100 GB/s
•  2 TB would take 20 sec
•  Assume cluster has 100 nodes, 1 GPU/node

•  Generate geometry: 1 sec
•  Render: 1 sec in HW, 10 sec in SW
•  Composite: 40 sec
•  Totals: 62 sec in HW, 73 sec in SW

28

Where to Perform Visualization in 100 Sec?
3.  Move data to 100 nodes in same interconnect

•  10X10 links at 5 GB/s ~ 500 GB/s
•  2 TB would take 4 sec to move
•  Totals: 46 sec (GPU), 55 sec (CPU)

4.  Use shared memory on all simulation nodes
•  Dedicate 1 core per SMP node (assume 5000)
•  Generate geometry: 0.04 sec
•  Render: 0.4 sec in SW
•  Composite: 4 sec (estimated)
•  Totals: 4.4 sec in SW – fastest, uses the least

resources, 10% benefit possible from accelerators
29

Application Resilience

•  Basic Fault Tolerance
•  If 1 or more nodes fail during a batch job

•  Do not want job to lose its place in queue!
•  Resume from last checkpoint on same # nodes ASAP
•  Idea: request enough nodes to run job + spares

•  System must not terminate batch job on node failure
•  Job script must detect failure and restart run on good nodes
•  Optimum process layout could be lost when using spares

30

Application Resilience
•  More sophisticated – no spares needed

•  IF batch system were able to obtain replacement nodes
•  Attempt to maintain good process layout?
•  Resume job script, restart from last checkpoint

•  Beyond basic Fault Tolerance
•  Requires apps that can survive node failure
•  Consider in-memory checkpointing

•  Much quicker than doing IO, can be more frequent
•  Resume on new set of nodes
•  Process layout still an issue – need to migrate all tasks?

•  Requires dynamic process management, plus error
codes from comm calls indicating node failure

31

Application Resilience
•  Would it be easier to write in-memory checkpoint to

disk on node failure, and then restart from files?
•  Simplifies coding, no dynamic process mgmt. or migration
•  Benefits from frequent in-memory checkpointing
•  Requires writing only that last checkpoint to disk
•  Restart allows app to re-do process layout for new node set

32

Recap

•  Blue Waters project expected to continue
•  Case studies on improving application scalability

•  MILC – performance model, MPI datatypes
•  NAMD – Charm++ optimizations for jaguar
•  DNS – Decompostion & overlap strategies

•  Visualization for tornado simulations
•  Where/how to make images quickly enough

•  Improving application resilience
•  Practical strategies involving checkpoint/restart

33

