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Blue Waters 

•  Project expected to continue on schedule with 
alternate system & vendor 
•  Production next Summer 

•  Alternate system will meet Science Team’s needs 
•  Many fast, general-purpose CPUs 
•  High speed, low latency interconnect 
•  Ample memory, disk space, I/O speed, archive 

capacity, external bandwidth 
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Case Studies in Improving Applications 

•  Petascale benchmark problems 
•  MILC – lattice quantum chromodynamics 
•  DNS – Turbulence 
•  NAMD – molecular dynamics 
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MILC – Lattice QCD 

•  T_total = T_comp + T_halo + T_AllReduce + T_io 
•  5 key phases including CG sparse linear solver 

•  Kernel: complex 3x3 matrix times 3x1 vector 
•  Small per-core lattice, typically fits in L3 cache 

•  Halo exchanges for 4D lattice 
•  Small messages 
•  Too small for significant overlap with computation 

•  CG calls AllReduce 1000s of times per step 
•  Sensitive to jitter 
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MILC 
•  Performance model developed at NCSA 

•  Details in Hoefler, Gottlieb: “Parallel Zero-Copy 
Algorithms for Fast Fourier Transform and 
Conjugate Gradient using MPI Datatypes” 

•  Sequential performance based on actual HW 
•  Takes into account per-core data & cache sizes 

•  Communication overhead 
•  On-node vs. off node 
•  Mapping for specific interconnect, congestion 
•  Pt to pt, collectives, message sizes & counts 
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MILC 
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•  Communication overhead as function of per-core lattice size 
•  Message pack/unpack is 10-15% of run time 



MILC 

•  Significant amount of time spent gathering, 
packing, and unpacking message buffers 
•  User-defined data types can minimize copying by 

gathering and sending as data stream 
•  Model predicts savings of 10-15% 

•  Get 11% on some systems 
•  Note: some MPI implementations have poorly 

optimized user-defined data types 
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MILC (cont’d) 

•  Additional optimizations & considerations 
•  SIMD-ize matrix-matrix and matrix-vector ops 

•  ~25% overall speedup realized on some systems 
•  Careful placement of tasks on processors crucial 

•  On 3D torus, distribute 4th dimension on-node  
•  Resource mgr needs topology awareness 
•  Sensitive to interspersed IO nodes, etc.  
•  Interference from other jobs impacts run times 
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NAMD 
•  Molecular Dynamics 
•  Forces and decomposition 

•  Bonded, non-bonded, long-range electrostatic 
•  Charm++ treats tasks as user-level threads 

•  Many tasks per core – virtualized 
•  Cheap to migrate, sophisticated load balancing 

•  Asynchronous execution  
•  Tasks execute when their data is available 
•  Automatic overlap of communication & comp 

•  Domain decomposition plus task parallelism  
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NAMD 
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NAMD 
•  Rework entire toolchain to support 100M atoms 

•  Initialize using parallel IO 
•  Reduce memory footprint 

•  Replicate read-only data only once per SMP 
•  Exploit shared memory in Charm++ on jaguar 

•  Utilize low-level communication libs (uGNI) 
•  Assign one communication thread per SMP 
•  Pin to core 0, which gets most OS tasks 
•  Excellent scaling on jaguar (see plot) 
•  PME inherently harder to scale – 3D FFTs 
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NAMD Strong Scaling on Jaguar 
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Ideal PME cutoff w/ barrier cutoff w/o barrier 

•  100M atom system 
•  Barrier in code required for pressure control 
•  Exploring ways to improve PME scalability 
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NAMD 
•  Reference: Mei, Sun, Zhang, Bohm, Kale 
“Enabling and Scaling Biomolecular Simulations of 
100 Million Atoms on Petascale Machines with a 
Multicore-optimized Message-driven Runtime” 
•  Paper to be presented at SC11 
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DNS 

•  Describing collaborative work by: 
•  Dr. Jeongnim Kim, NCSA/Blue Waters 
•  P.-K. Yeung’s Science Team (GA Tech, U. TX 

Austin, etc.) 
•  Dmitry Pekurovsky (SDSC) 
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DNS – Direct Numerical Simulation 
•  Homogeneous incompressible turbulence 
•  Pseudo-spectral method 
•  Explicit time stepping 
•  Run times dominated by 3D FFTs at scale 

•  All-to-All communication patterns 
•  1D slab and 2D pencil decompositions often used 
•  Other applications also use 3D FFTs 

•  Coulomb potential for MD, e.g., NAMD, LAMMPS … 
•  Electronic structure methods, e.g., PARATEC, Qbox … 
•  Plasma physics (UPIC) 
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Decomposition of N-Cubed Grid Over np Cores 
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slab pencil cube 

At petascale, ~ 200k cores 



3D FFT 
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•  Successive 1D FFTs in each dimension 
•  Task needs all points across the domain for efficient execution 
•  For 2D pencil decomposition, must transpose 3D arrays twice 

 

 
 



Pencil distribution using MPI: P3DFFT* 
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  Array syntax in C convention. 
* P3DFFT library, http://code.google.com/p/p3dfft/,  D. Pekurovsky, SDSC 

          MPI tasks with   

•  Can exploit efficient 1D FFT on  N elements of 
stride 1 by FFT libraries, e.g., ESSL, FFTW 

•  But, need to transpose the pencils twice 

 
           

   communicator groups (YZ slabs) of        tasks  
   communicator groups (XY slabs) of        tasks  
 
 

slabs 



Two-Level Decomposition (Sheet on Node) 
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•  Pencil decomposition has more tasks and 
communication than slab decompostion 

•  SMP nodes will have many cores and lots of 
memory on Blue Waters 

•  Possible to fit a sheet on an SMP node                  
•  Can do 2D FFTs on an SMP 

•  Leverage efficient threaded 2D FFT libs 
•  Eliminates interconnect traffic for these 

dimensions 
•  Same communication as slab decomp, but 

allows factor of (cores per SMP) more tasks 

 



DNS – Additional Optimizations 

•  Overlap communication with computation 
•  Transform 3 components independently 
•  Can overlap computation for 2nd and 3rd 

component with comm for 1st and 2nd, resp. 
•  Finer grained overlap (grid line-wise) also possible 

•  Cylindrical cutoff radius in Fourier space 
•  Omits communication for unneeded data (50%!) 
•  Load balanced by distributing required grid lines 

21 



Visualization for Tornado Simulations 
•  Analysis by Dr. B. David Semararo, NCSA 
•  Code: CM1  
•  Prof. Bob Wilhelmson leads Science Team 
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Visualization for Tornado Simulations 

•  Data volume & time constraints 
•  Simulation dumps 2 TB snapshot every 100 sec 
•  Want image production to keep up 

•  Scenarios 
•  Use external cluster 
•  Use shared file system to move data to viz. cluster 
•  Use resources in same interconnect fabric 
•  Use shared memory on SMPs running simulation 

•  Estimate benefit of accelerators 
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The Visualization Process 
Geometry 

Data 
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Simulation 

Transform Rendering 

File System or Memory 

To display or image store 

Change Data Selection 

Change Transformation 

Visualization Pipeline 
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The Visualization Process 

•  Transformations take data to geometry 
•  Visualization Algorithms – isosurface, slice, 

threshold, pseudocolor, streamline, etc. 
•  Data Filters – subsampling, probing, scalar and 

vector operations….  
•  Rendering takes geometry to images 

•  Texture application, lighting calculations, viewing 
calculations…  

•  Raster scan or ray trace 
•  GPU (hardware accel), CPU (software render)  
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Pipeline Component Times – Strong Scaling 

6.8 M triangles - 3840x2160
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Key Observations 

•  Compositing images does not scale well 
•  Sweet spot at about 256 cores for this image size 

on POWER5+ 
•  For parallel image generation, rendering takes a  

relatively small fraction of run time 
•  True even if rendering in software 
•  Benefit from GPUs may be quite limited 
•  Should compare timings for each stage in pipeline 
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Where to Perform Visualization in 100 Sec? 
1.  Move data to local cluster 

•  Best available network bandwidth ~ 0.5 GB/s 
•  2 TB would take 4000 sec (40X too slow!) 

2.  Use file system to move data to remote cluster 
•  Excellent throughput would be ~ 100 GB/s 
•  2 TB would take 20 sec 
•  Assume cluster has 100 nodes, 1 GPU/node 

•  Generate geometry: 1 sec 
•  Render: 1 sec in HW, 10 sec in SW 
•  Composite: 40 sec 
•  Totals: 62 sec in HW, 73 sec in SW 
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Where to Perform Visualization in 100 Sec? 
3.  Move data to 100 nodes in same interconnect 

•  10X10 links at 5 GB/s ~ 500 GB/s 
•  2 TB would take 4 sec to move 
•  Totals: 46 sec (GPU), 55 sec (CPU) 

4.  Use shared memory on all simulation nodes 
•  Dedicate 1 core per SMP node (assume 5000) 
•  Generate geometry: 0.04 sec 
•  Render: 0.4 sec in SW 
•  Composite: 4 sec (estimated) 
•  Totals: 4.4 sec in SW – fastest, uses the least 

resources, 10% benefit possible from accelerators 
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Application Resilience 

•  Basic Fault Tolerance 
•  If 1 or more nodes fail during a batch job 

•  Do not want job to lose its place in queue! 
•  Resume from last checkpoint on same # nodes ASAP 
•  Idea: request enough nodes to run job + spares 

•  System must not terminate batch job on node failure 
•  Job script must detect failure and restart run on good nodes 
•  Optimum process layout could be lost when using spares 
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Application Resilience 
•  More sophisticated – no spares needed 

•  IF batch system were able to obtain replacement nodes 
•  Attempt to maintain good process layout?  
•  Resume job script, restart from last checkpoint 

•  Beyond basic Fault Tolerance 
•  Requires apps that can survive node failure 
•  Consider in-memory checkpointing 

•  Much quicker than doing IO, can be more frequent 
•  Resume on new set of nodes 
•  Process layout still an issue – need to migrate all tasks? 

•  Requires dynamic process management, plus error 
codes from comm calls indicating node failure 
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Application Resilience 
•  Would it be easier to write in-memory checkpoint to 

disk on node failure, and then restart from files? 
•  Simplifies coding, no dynamic process mgmt. or migration  
•  Benefits from frequent in-memory checkpointing 
•  Requires writing only that last checkpoint to disk 
•  Restart allows app to re-do process layout for new node set 
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Recap 

•  Blue Waters project expected to continue 
•  Case studies on improving application scalability 

•  MILC – performance model, MPI datatypes 
•  NAMD – Charm++ optimizations for jaguar 
•  DNS – Decompostion & overlap strategies 

•  Visualization for tornado simulations 
•  Where/how to make images quickly enough 

•  Improving application resilience 
•  Practical strategies involving checkpoint/restart 
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