
  

Multipole gravity solver for 3D simulations of core-collapse supernovae with CHIMERA
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CHIMERA models core-collapse supernova physics using several 
code components:

● Hydrodynamics (EVH1) (Mezzacappa, 
1998)

● Self-gravity: Newtonian + GR extension
● Neutrino transport (MGFLD-TRANS) 

(Bruenn, 1985)
● Nuclear reaction networks (XNET) (Hix, 

Thielemann, 1999)

Spherical polar grids suffer from increasingly 
small zone in the polar regions.  This places 
severe limits on the computational time step.

To alleviate this problem, Kageyama & Sato 
(2004) introduced the Yin-Yang grid.  Two 
symmetrical grids, which are subsections of a 
spherical polar grid, are overset to cover the 
full solid angle of 4π steradians.

Introduced by Mueller & Steinmetz (1995), this algorithm efficiently 
solves Poisson equation for the gravitational potential of self-
gravitating hydrodynamic flows in 3D.

The solution to Poisson's equation is given as a multipole expansion 
of the density distribution.

These spherical 
harmonic 
expansions are 
not possible on 
the Yin-Yang 
grid.

CHIMERA is a multi-dimensional numerical 
code for studying core-collapse supernova.  
Akin to the mythical creature which is its 
namesake, CHIMERA is built from several 
distinct physics modeling codes (Bruenn, 2009).

The advent of petaflop computing has opened up new 
possibilities in simulating supernovae.  The computing power and 
sophistication of parallel programming tools allow for a deeper 
and more complete investigation into the nature and 
understanding of supernova physics.

CHIMERA is capable of running in 1, 2, or 3 spatial dimensions.  The 
3D code implements the Yin-Yang grid, a new technique in 3D 
spherical coordinate systems that allows for faster simulations by 
avoiding coordinate singularities.
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To overcome this issue, we implement a full polar 
auxiliary grid, oriented to be coincident with the Yin 
grid.  The density is then interpolated onto the 
auxiliary grid from both the Yin and Yang grids 
using a bilinear interpolation scheme.

The multpole expansion is carried out in a normal fashion on this 
auxiliary grid.  Once the angular weights are determined, we return to 
the Yin-Yang grids to form the potential and complete the algorithm.  

This modified version of the 
algorithm has been tested using 
test cases with known solutions 
for the gravitational potential.

Test cases for the spectral poisson solver using homogeneous density distributions.  Top spheroid test bottom offset sphere test.  Plotted left is the contour of the 
gravitational potential center is the maximum error of the solver from a known solution and right is the mean error of the solver from a known solution.

Plot of the relative error in the gravitational potential using a known solution 
for the spheroid case.  Notice the faint Yin-Yang grid boundary.

The Yin grid

The Yin-Yang grid overset, covering the full solid 
angle.  Notice the overlapping boundary regions, 
which require special attention.

A Mercator projection of a Yin-Yang spherical 
surface.

Left: A 2D 
CHIMERA 
simulation 
showing the 
entropy of a 
12 solar mass 
model 400 ms 
after bounce
Right: 3D 
simulation of 
15 solar mass 
model 132 ms 
after bounce.

Each grid is defined in spherical polar 
coordinates by

The parameter δ is a small angular width, 
used to ensure full coverage of the full solid 
angle.
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Between grids, the angular coordinates 
transform as 

Where the superscripts n and e denote the 
Yin and Yang grids, respectively.

Diagram of the interpolation 
scheme. Four neighboring values of 
the original grid are used to 
calculate the value at the point on 
the new grid.
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The algorithm is seen to very 
good agreement with these 
tests.  

Motivation

An unsolved phenomenon in supernova theory is the mechanism by which the stalled core-collapse supernova shock is revived. Several 
effects exist that attempt to explain this dilemma, including neutrino-driven convection and SASI (Blondin et al., 2003).

Furthermore, modeling of supernovae allows for insights into the physics of stellar evolution, gravitational waves (Yakunin et al., 2010), and 
neutrino physics.

Each code component (hydro, gravity, ect) can run independently 
during one time step. This feature allows these components to be 
tasked in parallel, so further improve code efficiency.

The Yin-Yang grid requires a new implementation of the spherical 
multipole gravity solver.

The individual components of CHIMERA are threaded and converted 
for OpenACC.  MPI and OpenMP are utilized, and CUDA 
development on select components is underway.

Core-collapse supernova are the end result of stars with a mass greater than 10 solar masses and have burned their cores down into iron.  
Gravitational collapse causes the formation of a neutron star core or black hole, depending on the initial mass. The supernova explosion injects 
the surrounding interstellar medium with energy and newly formed elements. 
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