
Forward and Adjoint Simulations of Seismic Wave Propagation
on Emerging Large-Scale GPU Architectures

DANIEL PETER1, MAX RIETMANN2, PETER MESSMER3, DIMITRI KOMATITSCH4, OLAF SCHENK2 AND JEROEN TROMP1

1 DEPARTMENT OF GEOSCIENCES, PRINCETON UNIVERSITY, USA, 2 USI LUGANO, INSTITUTE OF COMPUTATIONAL SCIENCE, SWITZERLAND, 3 NVIDIA CORP., ZURICH,

SWITZERLAND, 4 CNRS MARSEILLE, LABORATORY OF MECHANICS AND ACOUSTICS, FRANCE

Abstract

In seismic tomography, waveform inversions require accurate simulations of seismic
wave propagation in complex media. The current versions of our spectral-element
method (SEM) packages, the local-scale code SPECFEM3D and the global-scale code
SPECFEM3D_GLOBE, are widely used open-source community codes which simulate
seismic wave propagation for local-, regional- and global-scale applications. These nu-
merical simulations compute highly accurate seismic wavefields, accounting for fully 3D
Earth models.
We extended these high-order finite-element packages to further exploit graphic pro-
cessing units (GPUs) and perform numerical simulations of seismic wave propagation
on large GPU clusters. These enhanced packages can be readily run either on multi-core
CPUs only or together with many-core GPU acceleration devices. These new MPI/CUDA
solvers exhibit excellent scalability and achieve speedup on a node-to-node basis over
the carefully tuned equivalent multi-core MPI solver. We present case studies run on a
Cray XK6 GPU architecture up to 896 nodes to demonstrate the performance of both the
forward and adjoint functionality of the code packages.

Seismic wave propagation

Far-field seismic wave propagation is well described by linear elastodynamics, formu-
lated e.g. as a second-order displacement system. For mass density ρ and excitation
source f at xs, the second-order strong form of the elastodynamic momentum equation
in displacement u is given by

ρ(x)∂2t u(x, t)−∇ ·T(x, t) = f(xs, t) in ⊕, (1)

subject to kinematical and dynamical boundary conditions [r̂ · u]+− = 0 and r̂ ·T = 0 on
the free outer surface ∂⊕ with unit outward normal r̂. The stress T(x, t) is related to the
displacement gradient ∇u via Hooke’s constitutive law

T(x, t) = C(x) :∇u(x, t), (2)

where C is the fourth-order elasticity tensor. The weak form for test functions w with
square-integrable derivatives reads∫

⊕
[
ρw · ∂2t u+∇w :C :∇u

]
d3x =

∫
⊕
w · fd3x, (3)

which naturally honors the free-surface boundary condition. Coupling terms at internal
fluid/solid domain interfaces may be explicitly added with boundary conditions which
imply continuity between pressure and normal displacements at such surfaces.
Upon (continuous or discontinuous) Galerkin discretization, we arrive at the ordinary
differential equation in time

Mü(t) +Ku(t) = F(t), (4)

where M is the mass matrix and K the stiffness matrix. This can be solved using a fully
explicit, conditionally stable, time scheme if M is diagonal, as for instance constructed
by a Gauss-Lobatto-Legendre basis.

Halo exchange

The solver algorithm follows the following procedure:
for t = 1,NSTEPS do

Time-step update ()
for phase=outer,inner do

Stiffness Assembly (phase)
Absorbing Boundaries (phase)
Source Forcing (phase)
MPI-Communications (phase) // sent asynchronously

end for
Time-step finalize ()
Calculate Seismograms ()

end for
where the “outer” and “inner” phases correspond to elements on the partition boundary
halo and the inner, nonhalo region, respectively.

GPU 1 GPU 2

MPI-Communication

CPU-GPU Memcpy

GPU-Computation outer inner ...

to CPU

non-blocking send/recv

to GPU

t
0.4ms 33ms

0.2ms 0.2ms

tn+1tn

Fig. 1 A view of the computational time line, outlining our overlapping strategy. The
shaded region contains elements in the “outer” domain, which share a boundary, an edge
or a point with another partition and are computed first. The time line elements are not
displayed to scale, but their approximate timing for the 303,116 element mesh on two
GPUs is included directly below each, respectively.

Mesh coloring

FF Droux Atomic Non-Atomic
0

50

100

150

200

P
er
fo
rm

a
n
ce

(G
F
L
O
P
/s
)

0 2 4 6 8 10 12 14

200

300

400

Color

N
u
m
b
er

of
E
le
m
en
ts

FF
Droux

Fig. 2 (top) The total performance of two GPUs on a 303,116 resolution element mesh.
The first two bars represent two separate coloring algorithms. The third bar represents a
noncolored version, which uses CUDA’s atomicAdd() operation to guarantee correctness.
All schemes are compared to the final bar, which provides an upper performance bound
as it uses neither coloring nor atomic updates, and thus cannot ensure correct results,
but runs at maximum speed.
(bottom) The distribution of colors from a small test mesh to demonstrate the balance
of colors between FF and Droux. In this example, the FF algorithm uses the optimal
number of colors for a regular hexahedral mesh (8), but with an uneven distribution.
Droux requires more colors, but distributes them evenly.

Performance

 100

 1000

 10000

 100000

 1 2 4 8 16 32 64 128 256

Pe
rfo

rm
an

ce
 (G

Fl
op

s/
s)

Number of Nodes (1xGPU, 32xCPU)

XE6 CPU (Todi)
XK6 GPU (Todi)

Fig. 3 Weak scaling results on XK6 GPU and XE6 CPU nodes: Performance results for 400K
element meshes, showing a speedup factor of ∼1.7x to 1.75x between CPU and GPU.

 100

 1000

 10000

 100000

 1 2 4 8 16 32 64 128 256 512 1024

Pe
rfo

rm
an

ce
 (G

Fl
op

s/
s)

Number of Nodes (1xGPU, 32xCPU)

XE6 CPU (Todi)
XK6 GPU (Todi)
XE6 CPU (Titan)
XK6 GPU (Titan)

Fig. 4 Strong scaling results on XK6 GPU and XE6 CPU nodes: Performance results for
300K and 110M element meshes, showing a speedup factor of ∼2.5x to 1.7x between CPU
and GPU up to 32 nodes.

Conclusions

We have extended the full-featured SPECFEM3D software package to run on large GPU
clusters. We compared the most recent Cray XE6 32-core CPU nodes against single-GPU
XK6 nodes and demonstrated weak scaling up to 128 nodes, with a GPU performance
gain of 1.7x. The excellent weak scaling performance indicates that GPU simulations
with SPECFEM3D can be very efficient when each GPU node has enough elements in its
partition, i.e. when granularity is chosen thoughtfully.

We also compared the strong scaling performance of different-sized meshes on the GPU
and CPU, which highlights a level of inefficiency when scaling the GPU version past a
number of elements/GPU. These results, especially the change in performance by vary-
ing the number of elements per GPU, are important to guide future optimization work.
The weak scaling results do indicate, however, that if the GPU memory is kept full, high
performance and efficiency can be attained at scale.

