
Seeking a sustainable approach for
scientific simulation

Robert J. Harrison
harrisonrj@ornl.gov

robert.harrison@utk.edu

mailto:harrisonrj@ornl.gov
mailto:robert.harrison@utk.edu

Productive Programming Models for
Exascale, August 14-15, 2012

Portland, OR
● Recent workshop organized by PNNL
● http://xsci.pnnl.gov/ppme
● Key Objectives

● Highlight the effectiveness of high-level programming models
within the computational and computer science communities

● Present the research and development roadmap for library and
language based productive programming models

● Engage the computational sciences community to understand
their current computational challenges and future application
needs and requirements

● Engage the computer science community to share ideas on
interoperability and scalability of programming models for next-
generation computer architectures.

Some of the titles/talks I liked
● Exascale: your opportunity to create a decent

HPC language
● Gotta love Brad's optimism – 90% agreement

● Poking the Soft Underbelly of Programmer
Productivity on Exascale
● Ditto for George's pessimism – 100% agreement

● Performance, Correctness, and
Programmability: Challenges for Parallel
Programming at Exascale – 50% agreement
● We will piece solution from small, mostly orthogonal

concepts & components – but OMG ugh!!!!!

Exascale myths?
● Resilience – the sky is falling (when matters)?

● Read that petascale book – were we right then?
● Al Gara is not the only one to have said aloud that we'd be stupid to buy

(and XXX to sell) a completely unreliable machine
● Huge industries already compute on unreliable hardware

● Application S/W explicit power management?
● Chip designers don't seem to need or want this
● This is different from power efficient/aware algorithms

● Radically new ideas needed to express concurrency?
● Trust (but verify) Levesque – we've seen (most of) it before

● Exascale complexity is more complex than our other complexities?
● Ask Karol Kowalski to explain how to compute the Raman spectrum using

MR-EOMCCSD(T)-f(R12) with local correlation and linear scaling w.r.t.
#electrons with implicit solvation and scalar-relativistic potentials.

5

Do new science with

O(1) programmers
O(100,000) nodes
O(1000,000) cores
O(100,000,000)
threads & growing

● Increasing intrinsic
 complexity of science

● Complexity kills … sequential or parallel

● Expressing concurrency at extreme scale
● Managing the memory hierarchy

● Semantic gap (Colella)

● Why are equations O(100) lines but program is O(1M)
● What’s in the semantic gap – and how to shrink it?

Predictions
● Chemistry codes will run on first exascale machines without worrying

about resilience much more than now
● Defensive driving allowed and will be on the path to full(ish) resilience
● The system software (detection, notification, recovery) will be the limiting factor

not the science software

● Exascale-era chemistry codes will do more science and be shorter /
simpler / better-by-measure-x than they are now
● No-one will pay us to just rewrite existing functionality – and we don’t want to!
● New capabilities with expanded science goals

● Most existing performance sensitive code must be discarded/rewritten
● Phew! Bits of NWChem are now 40 years old!
● But lots of code is not performance sensitive

● Chemists won't be writing (a lot of) traditional sci. code
● Why are you planning to? How quaint! (unless U are a tool builder)

Exascale humor

● At least for Office of Science applications

Exascale Timeline

Experimental
Facility

System and node
architecture design starts

Exascale
Programming
Environment – v0.8

Exascale
Programming
Environment – v0.9

Software Technology – OS, runtime, programming environment & resiliency

First
Cabinet

System Build
Contract Starts

06/
2011

12/
2011

06/
2012

12/
2012

06/
2013

12/
2013

06/
2014

12/
2014

06/
2015

12/
2015

06/
2016

12/
2016

06/
2017

12/
2017

06/
2018

12/
2018

06/
2019

12/
2019

06/
2020

12/
2020

Path Forward Phase &
System Design Phase

System Build Phase

RFP issued

Exascale
Programing
Environment – concept design

Exascale Programming
Environment – v0.1 Exascale Applications

Start

First node

Accept
Exascale
System

Exascale Co-Design

Harrod 11/11

More exascale myths
● It’s all about that machine in 2018

● 2018 is just one point on the path into our future
● Need to think even further out. What about 2030? The

science applications and related software cost a lot more
than the hardware and some will be alive then.

● We need a completely new, exascale-specific
programming model
● We need greatly enhanced programming models that run

everywhere – laptop to exaflop

● Exascale H/W is necessarily heterogeneous
● The c**p we have to put up with now is but don't you think

that we can learn from bitter, miserable, soul crushing,
graduate student wasting experiences?

10

Exascale technologies
 Architecture – data is everything

 power 0.1 → 100 GFLOP/Watt memory 0.3 → 0.03 byte/FLOP

 cores 8 → 64-1024+ per node total no. cores 100K → 100+M

 concurrency 106 → 109

 Will be just a corner of entire ecosystem
 In 2020 1EF = $100M = 1000 PF

→ 1PF ≤ 0.1M
 Most science will happen at petascale or below

 Hardware
 Will leverage high-end server and

professional computing platforms

 Software
 Must still run everywhere; still more expensive than H/W

1 core

11

Exascale good news:
Fine & medium grain parallelism

● Limits of coarse grain parallelism
● Many science and engineering applications tapped

out between 100K to 10M nodes
● Power and bandwidth impose similar limits

● Technology is delivering more transistors
● New parallelism will be primarily on chip
● Vectors, hiding latency
● NVIDIA GPGPU, Intel MIC, IBM BG/Q, AMD/ATI,

Intel/AMD x86 etc. all converging from different
directions

12

More exascale good news (sort of):
Bandwidth and power

● Mobile and HPC have common interests
● How fast can you compute on an infinitely fast

processor?
● As fast as you can get data to it

● Which is most expensive (in both $ & W) –
FLOPS/s or bandwidth?
● Bandwidth
● Sometimes even on chip

(actually sometimes FPUs can dominate power)

13

Exascale S/W challenges

● Expressing architecture agnostic / future proof intent
● Hierarchical parallelism

● Moving data up/down memory hierarchy
● Co-locating work and data
● Processes, tasks, threads, vectors

● Multiple logical threads per core
● Sharing caches and FP units
● Must collaborate not compete

● Resilience (when?), esp. soft / silent errors

14

Wish list

● Eliminate gulf between theoretical innovation in small
groups and realization on high-end computers

● Eliminate the semantic gap so that efficient parallel code
is no harder than doing the math

● Enable performance-portable “code” that can be
automatically migrated to future architectures

● Reduce cost at all points in the life cycle

● Much of this is pipe dream – but what can we aspire to?

15

Scientific vs. WWW
or mobile software

● Why are we not experiencing similar
exponential growth in functionality?

● Level of investment; no. of developers?
● Lack of software interoperability and standards?
● Competition not cooperation between groups?
● Shifting scientific objectives?
● Are our problems intrinsically

harder?
● Failure to embrace/develop

higher levels of composition?
● Different hardware complexity?

16

Dead code

● Requires human labor
● to migrate to future

architectures, or
● to exploit additional

concurrency, or
● ...

● By these criteria most
extant code is dead

● Sanity check
● How much effort is

required to port to hybrid cpu+GPGPU?

7 December 1969

17

What is productivity?

● Achieve objectives
● within people/$$/time budget
● without exhaustive expertise
● sustainably in face of increasing complexity or

changing specs

● To be measured over total life of code
● develop
● tune/port/tune/port/...
● fix bugs, extend, collaborate, embed, interface, …
● staff turnover, student developers, ...

18

How do we write code for a machine
that does not yet exist?

● Nothing too exotic, e.g., the mix of SIMD and
scalar units, registers, massive multi-threading,
software/hardware managed cache, fast/slow &
local/remote memory that we expect in 2018+

● Answer 1: presently cannot
● but it’s imperative that we learn how and deploy the

necessary tools

● Answer 2: don’t even try!
● where possible generate code from high level specs
● provides tremendous agility and freedom to explore

diverse architectures

19

Conventional solution
 Problem statement + brain

→ algorithm
 Algorithm + language + brain

→ program
 Compile program

→ executable
 Computer + executable + input

→ result
 The brain is

 Expensive
 Finite
 Not growing exponentially

Image from http://www.ucdmc.ucdavis.edu/welcome/features/20071017_Medicine_whitematter/Photos/head_and_brain.jpg

The only step currently
employing HPC in most
applications

20

Cost perspectives
 250,000 processors running for 12 hours

 342 processor years

 Devoting 1+% of runtime resources to load balance
and scheduling is quite reasonable
 2,500+ processors

 Similarly for transformation, generation, compilation
 3.42+ year cpu time
 What additional transformations are possible?
 What wall time is acceptable?
 There is no parallel compiler – “heal thyself?”

21

The language of
many-body physics

22

The Tensor Contraction Engine:
A Tool for Quantum Chemistry

Oak Ridge National Laboratory
David E. Bernholdt, Venkatesh
Choppella, Robert Harrison

Pacific Northwest National
Laboratory

So Hirata

Louisiana State University
J Ramanujam,

Ohio State University
Gerald Baumgartner, Alina
Bibireata, Daniel Cociorva,
Xiaoyang Gao, Sriram
Krishnamoorthy, Sandhya
Krishnan, Chi-Chung Lam,
Quingda Lu, Russell M. Pitzer, P
Sadayappan, Alexander
Sibiryakov

University of Waterloo
Marcel Nooijen, Alexander Auer

Research at ORNL supported by the Laboratory Directed Research and Development Program. Research at PNNL supported by the Office of Basic Energy Sciences, U. S. Dept.
of Energy. Research at OSU, Waterloo, and LSU supported by the National Science Foundation Information Technology Research Program

http://www.cis.ohio-state.edu/~gb/TCE/

Other challenges for comp. chem.
Robust and power efficient algorithms for one-body Schrodinger

Background: Density functional theory in atomic orbitals, block-sparse trees with fast summation
Science objective: Run at scaling limit for thermodynamic integration of energy-related materials
Issues: Interconnect, power, resilience, scaling, numerical robustness, at scaling limit data motion dominates,
irregular and small non-square matrices

Efficient and resilient algorithms to evaluate two-electron integrals
Background: Multiple algorithms – recursion, special functions, quadrature; near min.op. algorithms obtain
~40% peak on x86-64, but no satisfactory solution yet on current accelerators
Science objective: Increased accuracy and speed, more types of bases and integral
Issues: CPU/memory architecture, resilience, power, optimal algorithm hard to find (graph search)

24

Quantum locality can be exploited for data- and load-balancing via space-filling curves,
from atoms (A-B) through matrices (C) to the product space (D).

Multiresolution Adaptive Numerical
Scientific Simulation

Ariana Beste1, George I. Fann1, Robert J. Harrison1,2,
Rebecca Hartman-Baker1, Judy Hill1, Jun Jia1,

1Oak Ridge National Laboratory
2University of Tennessee, Knoxville

4,
Martin Mohlenkamp5, and Hideo Sekino6

4University of Colorado
5Ohio University

6Toyohashi Technical University, Japan

harrisonrj@ornl.gov

MADNESS 2009 27

Ariana Beste Hideo Sekino Robert Harrison

Gregory Beylkin

Eduard Valeyev

Judy Hill

George Fann

Paul Sutter
Matt Reuter

Alvaro Vasquez

Jun Jia
Tetsuya Kato
Justus Calvin
J. Pei

Scott Thornton

Rebecca
Hartman-Baker

Nicholas Vence
Takahiro Ii

MADNESS 2009 28

Funding
• MADNESS started as a DOE SciDAC project and the majority of

its support still comes from the DOE
• DOE SciDAC, divisions of Advanced Scientific Computing

Research and Basic Energy Science, under contract DE-AC05-
00OR22725 with Oak Ridge National Laboratory, in part using the
National Center for Computational Sciences.

• DARPA HPCS2: HPCS programming language evaluation
• NSF CHE 0625598: Cyber-infrastructure and Research Facilities:

Chemical Computations on Future High-end Computers
• NSF CNS-0509410: CAS-AES: An integrated framework for

compile-time/run-time support for multi-scale applications on high-
end systems

• NSF OCI-0904972: Computational chemistry and physics beyond
the petascale

What is MADNESS?

● A general purpose numerical environment for
reliable and fast scientific simulation
● Chemistry, nuclear physics, atomic physics, material

science, nanoscience, climate, fusion, ...

● A general purpose parallel programming
environment designed for the peta/exa-scales

● Addresses many of the sources of complexity that
constrain our HPC ambitions

http://code.google.com/p/m-a-d-n-e-s-s
http://harrison2.chem.utk.edu/~rjh/madness/

Numerics

Parallel Runtime

Applications

Why MADNESS?

● Reduces S/W complexity
● MATLAB-like level of composition of scientific

problems with guaranteed speed and precision
● Programmer not responsible for managing

dependencies, scheduling, or placement

● Reduces numerical complexity
● Solution of integral not differential equations
● Framework makes latest techniques in applied math

and physics available to wide audience

E.g., with guaranteed precision of 1e-6 form a
numerical representation of a Gaussian in the

cube [-20,20]3, solve Poisson’s equation, and plot
the resulting potential

(all running in parallel with threads+MPI)

There are only two lines doing real work. First the Gaussian (g) is projected into
the adaptive basis to the default precision. Second, the Green’s function is applied.
The exact results are norm=1.0 and energy=0.3989422804.

output: norm of f 1.00000000e+00 energy 3.98920526e-01

Big picture
● Want robust algorithms that scale correctly with

system size and are easy to write
● Robust, accurate, fast computation

● Gaussian basis sets: high accuracy yields dense
matrices and linear dependence – O(N3)

● Plane waves: force pseudo-potentials – O(N3)

● O(N logmN logk) is possible, guaranteed

● Semantic gap
● Why are our equations just O(100) lines but

programs O(1M) lines?

● Facile path from laptop to exaflop

“Fast” algorithms
● Fast in mathematical sense

● Optimal scaling of cost with accuracy & size

● Multigrid method – Brandt (1977)
● Iterative solution of differential equations
● Analyzes solution/error at different length scales

● Fast multipole method – Greengard, Rokhlin
(1987)
● Fast application of dense operators
● Exploits smoothness of operators

● Multiresolution analysis
● Exploits smoothness of operators and functions

Essential techniques for fast
computation

● Multiresolution

● Low-separation
rank

● Low-operator
rank

V 0⊂V 1⊂⋯⊂V n

V n=V 0V 1−V 0 ⋯ V n−V n−1

f x1, , xn=∑
l=1

M

 l∏
i=1

d

f i
 l xiO

∥ f il ∥2=1 l0

A=∑
=1

r

u v

TO

0 v

T v=u

T u=

35

H atom
Energy

36

H atom actual source
Let
 Omega = [-20, 20]^3
 r = x -> sqrt(x_0^2 + x_1^2 + x_2^2)
 g = x -> exp(-r(x))
 v = x -> -r(x)^-1
In
 psi = F g
 nu = F v
 S = < psi | psi >
 V = < psi | nu * psi >
 T = 1/2 * sum_i=0^2 < del_i psi | del_i psi >
 print S, V, T, (T + V)/S
End

37

He atom
Hylleraas

2-term
6D

38

He atom
Hartree-Fock

39

Hartree-Fock

● What I really wanted to type was

● But had to
● Provide E (or rather dE/dφ)
● Describe inexact-Newton algorithm with stopping criterion
● Transform to integral representation for efficiency and accuracy

● Can automate some steps, c.f. Maple, Mathematica
● But properties of computation in the underlying basis are crucial

for accuracy and efficiency

min

E [] s.t. ∥∥2=1

MADNESS 2009 40

MADNESS parallel runtime

MPI Global Arrays ARMCI GPC/GASNET

MADNESS math and numerics

MADNESS applications – chemistry, physics, nuclear, ...

MADNESS architecture

Intel Thread Building Blocks being considered as alternative for multicore

MADNESS 2009 41

Runtime Objectives
 Scalability to 1+M processors ASAP
 Runtime responsible for

 scheduling and placement,
 managing data dependencies,
 hiding latency, and
 Medium to coarse grain concurrency

 Compatible with existing models
 MPI, Global Arrays

 Borrow successful concepts from Cilk, Charm+
+, Python

 Anticipating next gen. languages

MADNESS 2009 42

Key elements
• Futures for hiding latency and automating

dependency management
• Global names and name spaces
• Non-process centric computing

– One-sided messaging between objects
– Retain place=process for MPI/GA legacy

compatibility
• Dynamic load balancing

– Data redistribution, work stealing, randomization

• Map-reduce and continuation-passing models
– Successful experiments including agreggating

small tasks for use of PCI attached accelerator

43

Summary
● We need radical changes in how we compose

scientific S/W ... not just because of exascale
− Complexity at limits of cost and human ability
− Need extensible tools/languages with support for code

transformation not just translation

● Students need to be prepared for computing and data
in 201x and 202x not 2000

− Pervasive, massive parallelism
− Bandwidth limited computation and analysis
− An intrinsically multidisciplinary activity

