
Scalable Trace Analysis
with Scalasca

David Böhme
JICS/GRS workshop, April 25, 2012



Scalasca performance analysis toolset

Automatic trace analysis solution
Extracts high-level bottleneck patterns
Works at scale (200k+ processes)

time

p
ro
ce
ss
es 1

2

Send

Recv

Wait state

Late-sender wait state

New analysis methods
Root-cause analysis and critical-path analysis characterize
inefficient parallelism

Slide 2 JICS/GRS workshop, April 25, 2012 David Böhme



Outline

Parallel trace analysis

Root-cause analysis

Critical-path analysis

Outlook: Tool interoperability

Slide 3 JICS/GRS workshop, April 25, 2012 David Böhme



Understanding performance is hard

time

p
ro
ce
ss
es

1

2

3

A B

A B

A B C

Send

SendRecv

Recv

wait state

wait state

delay

Long distance between cause and symptom
Actual performance impact not obvious

Slide 4 JICS/GRS workshop, April 25, 2012 David Böhme



Three analysis methods

Wait-state
analysis

Root-cause
analysis

Critical-path
analysis

time

p
ro
ce
ss
es

1

2

3

A B

A B

A B C

Send

SendRecv

Recv

Identify wait states in MPI communication.

Slide 5 JICS/GRS workshop, April 25, 2012 David Böhme



Three analysis methods

Wait-state
analysis

Root-cause
analysis

Critical-path
analysis

time

p
ro
ce
ss
es

1

2

3

A B

A B

A B C

Send

SendRecv

Recv

Determine delays that cause wait states.

Slide 5 JICS/GRS workshop, April 25, 2012 David Böhme



Three analysis methods

Wait-state
analysis

Root-cause
analysis

Critical-path
analysis

time

p
ro
ce
ss
es

1

2

3

A B

A B

A B C

Send

SendRecv

Recv

Identify activities that determine program runtime.

Slide 5 JICS/GRS workshop, April 25, 2012 David Böhme



Scalasca analysis workflow
Application

run
Local

event traces
Parallel
analysis

Global
analysis
report

Instrumented
executable

Instrumenter
compiler / linker

Source
modules Which

problem?
Where in the

code?
Which process?

Slide 6 JICS/GRS workshop, April 25, 2012 David Böhme



Parallel trace replay
Application records timestamped communication events

One trace file per process

Analysis processes traverse traces in parallel
Exchange information at original synchronization points

trace rank i

SENDENTER EXIT

trace rank j

RECVENTER EXIT

Slide 7 JICS/GRS workshop, April 25, 2012 David Böhme



Parallel trace replay
Application records timestamped communication events

One trace file per process
Analysis processes traverse traces in parallel

Exchange information at original synchronization points

trace rank i

SENDENTER EXIT

trace rank j

RECVENTER EXIT

Slide 7 JICS/GRS workshop, April 25, 2012 David Böhme



Post-mortem analysis advantages
Allows multiple replay passes
Backward replay lets data travel from effect to cause

trace rank i

SENDENTER EXIT

trace rank j

RECVENTER EXIT

backward replay

Slide 8 JICS/GRS workshop, April 25, 2012 David Böhme



Root-cause analysis

Find delays that cause wait
states

Follow the propagation chain

Distinguish propagating
and terminal wait states
Incorporate long-distance
effects in calculation of
delay costs

time

pr
oc

es
se

s 1

2

3

4

Delay

D. Böhme et al.: Identifying the root causes of wait states in large-scale parallel applications
ICPP 2010 (Best Paper Award)

Slide 9 JICS/GRS workshop, April 25, 2012 David Böhme



Root-cause analysis

Find delays that cause wait
states

Follow the propagation chain

Distinguish propagating
and terminal wait states
Incorporate long-distance
effects in calculation of
delay costs

time

pr
oc

es
se

s 1

2

3

4

Delay

Propagation

Propagation

D. Böhme et al.: Identifying the root causes of wait states in large-scale parallel applications
ICPP 2010 (Best Paper Award)

Slide 9 JICS/GRS workshop, April 25, 2012 David Böhme



Example: CICE model
Analysis of CESM sea ice model on Blue Gene/P
Performance data mapped onto application topology

Distribution of computation time Distribution of late-sender waiting time

CICE setup: 2048 processes, 1◦ dipole grid, cartesian grid decomposition

Slide 10 JICS/GRS workshop, April 25, 2012 David Böhme



CICE model: wait-state formation

Wait-state root causes

Propagating wait states

Terminal wait states

Slide 11 JICS/GRS workshop, April 25, 2012 David Böhme



Critical-path analysis

time

p
ro
ce
ss
es

1

2

3

A B C

A B C

A B C

Critical path in a parallel program (shown in red)

D. Böhme et al.: Scalable critical-path based performance analysis. Accepted at IPDPS 2012

Slide 12 JICS/GRS workshop, April 25, 2012 David Böhme



Critical-path profile and imbalance

time

p
ro
ce
ss
es

1

2

3

B C

B C

B C

Timeline

allocation time

Sync

B

C

Summary profile

wall-clock time

B

C
Imbalance impact

Critical-path profile

Critical-path profile shows wall-clock time consumption
Critical imbalance indicator finds inefficient parallelism

Imbalance = Tcritical − Tavg

Slide 13 JICS/GRS workshop, April 25, 2012 David Böhme



Analysis of MPMD programs
Critical path isolates partitions
that dominate runtime
Extended characterization of
parallel inefficieny

Intra-partition imbalance

Inter-partition imbalance

Ocean model

Land model Atm model

C
ou

pl
er

Functional decomposition in climate model

Slide 14 JICS/GRS workshop, April 25, 2012 David Böhme



Example: ddcMD

ddcMD molecular dynamics
simulation

Particle and mesh forces
calculated in different
partitions
3840+256 processes

Figure 2: Task layout on the BlueGene/P torus. Cyan arrows
indicate communication from MD tasks to collector tasks, blue
arrows indicate communication from collector tasks to FFT
tasks.

is the reduction of the contributions to ρ at each point from these
multiple tasks to a single sum.

To perform the reduction we nominate a subset of the particle
tasks as “collector” tasks (see Fig. 2). Each mesh point is uniquely
assigned to a collector task that is responsible for gathering all con-
tributions to ρ for that mesh point and performing the sum. The
number and arrangement of the collector tasks is a tunable param-
eter and all communication is local.

In Stage 2 of the communication, each collector task sends mesh
information to the appropriate mesh task using MPI_Isend. We
think of this stage as a gather operation since the mesh data is being
gathered to the mesh tasks. This communication is long-range, but
can be efficiently organized.

Once the long-range portion of the potential has been calculated
we perform the communication stages again but in reverse order.
The mesh tasks scatter mesh data back to the collector tasks which
in turn send values to the neighboring particle tasks. To maximize
the overlap of communication of computation the MPI_Irecvs
on the collector tasks are posted before we start the pair calculation.
This allows data to begin moving from the mesh tasks as soon as it
is available.

In benchmark calculations on Dawn using 144,384 processors
(9,216 mesh tasks and 135,168 particle tasks, of which 22,400 are
collector tasks) we observe that when work is properly balanced
between the particle and mesh tasks there is a pronounced asym-
metry in the communication times between the particle and mesh
tasks. Although the mesh tasks spend roughly 15% of total run-
time waiting for data to arrive, the particle tasks spend under 2% of
the total runtime sending it. Asynchronous communication allows
the particle tasks to continue with other work while the commu-
nication proceeds. Hence, we have successfully accomplished the
goal of minimizing communication time on the particle tasks by
overlapping the communication of mesh data with the explicit pair
computation.

This success demonstrates the effectiveness of the direct mem-
ory access (DMA) engine that was added to the BG/P design as
an improvement over BG/L[23]. The DMA is directly coupled to
the L3 (shared) cache on each node and is responsible for sending
and receiving data to and from the torus network. The CPU is thus
relieved of these tasks and is free to continue on to other compu-
tations. From comparisons with benchmark simulations performed
on BG/L, it is clear that there is a significant benefit from the DMA.

The two-stage approach just described has at least two advan-
tages over a single stage method in which each particle task simply
sends all of the mesh points it populates to the appropriate mesh
tasks and the reduction of partial sums is performed on the mesh
tasks. The first advantage is a reduction of communication band-
width from the particle to the mesh tasks. Although the number of
mesh points to which an particle task contributes varies with ng , for
our typical problems of interest it is roughly 2–5 times the number
that lie strictly within its computational domain. Hence a single
stage solution would require 2–5 times the network bandwidth to
complete communication in the same time. In the two-stage ap-
proach the mesh points are gathered and reduced locally so a larger
number of torus links can be active increasing the aggregate band-
width available to communicate mesh points. A second advantage
is that the number of collector tasks can be tuned to optimize total
communication cost. Changing the number of collector tasks al-
lows trade offs between the number of messages sent to each mesh
task in Stage 2 (with corresponding changes in message size) and
the bandwidth available for the reduction in Stage 1.

4.3 Layout
For a 3D torus network, the assignment of MPI tasks onto com-

pute nodes at specific torus coordinates can significantly impact
parallel efficiency at full machine scale. It is necessary to opti-
mize communication both within the short-range and long-range
subcommunicators, as well as between the two. For the latter, we
focused on splitting the torus into separate sections for the particle
and mesh tasks such that communication between the “collector”
tasks described in section 4.2 and the mesh tasks takes place along a
single torus dimension to reduce contention and avoid bottlenecks,
as illustrated in Figure 2. The tasks are then ordered within each
subcommunicator to provide nearest neighbor communication for
spatially adjacent particle tasks and reduce transpose communica-
tion times for the mesh tasks.

For a system of 1.2 billion particles on a 64 × 32 × 16 Blue
Gene/P partition (32,768 nodes, 131,072 tasks), we see a signif-
icant decrease in communication times using a custom task map
constructed as described above compared with the default (TXYZ)
layout. The total run time decreased by 36% when the custom map-
ping was used, with the greatest improvement being seen in the
intra-particle task communication times, which decreased by a fac-
tor of 3, likely due to the poor correspondence of the default map-
ping to the simulation box shape. Communication within the 3D
FFT was decreased by over a factor of 2, and communication be-
tween the particle and mesh tasks was more than 50% faster. These
results highlight the need to carefully understand and optimize the
communication patterns on large torus networks.

4.4 FFT Implementation
As described in Section 2.1, the long-range interaction term in

Eqn. 3 involves the use of a 3D Fourier transform between the
real-space (real-valued) density and the k-space (complex-valued)
density. To obtain optimal 3D FFT performance in the massively-
parallel regime a custom real-to-complex 3D Fast Fourier Trans-
form implementation (bigFFT) was developed using a 2D decom-

D. Richards et al.: Beyond Homogeneous
Decomposition, SC’10

Slide 15 JICS/GRS workshop, April 25, 2012 David Böhme



ddcMD: mesh size tuning

 0

 50

 100

 150

 200

 250

 300

 350

 400

462 480 512 528 560 576 616 640
 0

 50

 100

 150

 200

 250

 300

 350

 400

R
es

ou
rc

e 
co

ns
um

pt
io

n 
(C

PU
-h

rs
)

R
un

tim
e 

(s
ec

on
ds

)

mesh size

Critical path (on particle task)
Critical path (on mesh task)
Total resource consumption

Inter-partition imbalance costs

Small mesh size increases
workload of particle tasks
Increasing mesh size shifts
critical path to mesh tasks

 0

 50

 100

 150

 200

 250

 300

 350

 400

462 480 512 528 560 576 616 640
 0

 50

 100

 150

 200

 250

 300

 350

 400

R
es

ou
rc

e 
co

ns
um

pt
io

n 
(C

PU
-h

rs
)

R
un

tim
e 

(s
ec

on
ds

)

mesh size

Critical path (on particle task)
Critical path (on mesh task)
Total resource consumption

Inter-partition imbalance costs

Slide 16 JICS/GRS workshop, April 25, 2012 David Böhme



Future: Tool interoperability with Score-P

Score-P

Slide 17 JICS/GRS workshop, April 25, 2012 David Böhme



Score-P overview

	
  
	
  
	
  
	
  
	
  

Target	
  applica,on	
  (MPI,	
  OpenMP,	
  hybrid,	
  serial)	
  

	
  
	
  

Instrumenta,on	
  
	
  

	
  
	
  
	
  
	
  

Score-­‐P	
  measurement	
  infrastructure	
  

Online	
  
interface	
  

Event	
  traces	
  
(OTF2	
  format)	
  

Vampir	
   Scalasca	
   Periscope	
  TAU	
  

Hardware	
  counter	
  

Call-­‐path	
  profiles	
  	
  
(CUBE4	
  and	
  TAU	
  formats)	
  

Compiler	
   TAU	
  
instrumentor	
   OPARI	
  2	
   User	
  

Memory	
  mgmt.	
   more	
  …	
  

Slide 18 JICS/GRS workshop, April 25, 2012 David Böhme



Get Scalasca

Available under the New BSD open-source licence
www.scalasca.org

Current version 1.4.1 features wait-state analysis
Critical-path and root-cause analysis on request
Version 2.0 with Score-P support this fall

Slide 19 JICS/GRS workshop, April 25, 2012 David Böhme

www.scalasca.org

	Parallel trace analysis
	Root-cause analysis
	Critical-path analysis
	Outlook: Tool interoperability

