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THE PATH TO HIGH-EFFICIENCY COMPUTING

Bill Dally | Chief Scientist and SVP, Research NVIDIA | Professor (Research), EE&CS, Stanford
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In The Past,
Demand Was Fueled
by Moore’s Law
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Source: Moore, Electronics 38(8) April 19, 1965
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Source: Dally et al. “The Last Classical Computer”, ISAT Study, 2001 <ANVIDIA.



€6 . .
Moore’s Law gives us more transistors...
. b 3
Dennard scaling made them useful.

ml\ Bob Colwell, DAC 2013, June 4, 2013
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Moore, ISSCC Keynote, 2003

Source



Moore’s law is alive and well, but...

Instruction-level parallelism (ILP) was
mined out in 2001

Voltage scaling (Dennard scaling) ended

Summary 2005

Most power is spent on communication

What does this mean to you?

<ANVIDIA
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Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

Source: C Moore, Data Processing in ExaScale-ClassComputer Systems, Salishan, April 2011 <ANVIDIA.



In the Future

All performance is from parallelism

Machines are power limited
(efficiency IS performance)

Machines are communication limited
(locality IS performance)

<ANVIDIA.



18,688 NVIDIA Tesla K20X GPUs
TITAN 27 Petaflops Peak: 90% of Performance from GPUs
~ 17.59 Petaflops Sustained Performance on Linpack

SANVIDIA.



You Are Here

o = AT

2020

1,000PF (50x)

72,000HCNs (4x)
20MW (2x)
20PF 50 GFLOPS/W (25x)
18,000 GPUs ~10" Threads (1000x)
10MW
2 GFLOPs/W
~10" Threads
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Two Major Challenges

Energy Efficiency

25x in 7 years
(~2.2x from process)

Programming
Parallel (10" threads)
Hierarchical
Heterogeneous

<ANVIDIA.
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How is Power Spent in a CPU?

In-order Embedded 000 Hi-perf

ALU Data
Supply
5%

Dally [2008] (Embedded in-order CPU) Natarajan [2003] (Alpha 21264)
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Energy Shopping List

Processor Technology 40 nm 10nm
Vdd (nominal) 0.9V 0.7V
DFMA energy 50 pJ 7.6 pJ
64b 8 KB SRAM Rd 14 pJ 2.1pJ
Wire energy (256 bits, 10mm) 310 pJ 174 pJ
Memory Technology 45 nm 16nm
DRAM interface pin bandwidth 4 Gbps 50 Gbps
DRAM interface energy 20-30 pJ/bit 2 pJ/bit
DRAM access energy 8-15 pJ/bit 2.5 pJ/bit

Keckler [Micro 2011], Vogelsang [Micro 2010]
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FP Op lower bound

4 pJ
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CPU : GPU

1690 pJ/flop 140 pJ/flop
Optimized for Latency Optimized for Throughput
Caches Explicit Management

of On-chip Memory

Westmere Kepler
32 nm 28 nm

<ANVIDIA.



Latency-Optimized Core Throughput-Optimized Core
(LOC) (TOC)

PCs &7

Register

Rename

Instruction
Window

Register File

Reorder Buffer

<ANVIDIA.



Ma‘”3'§e§§,f§£ e 15% of SM Energy

SIMT Lanes

Shared Memory
32 KB

Streaming Multiprocessor (SM)

<SANVIDIA.
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W2 Level HW

W 3 Level HW
2 Level SW
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Two Major Challenges

Energy Efficiency

25x in 7 years
(~2.2x from process)

Programming
Parallel (10" threads)
Hierarchical
Heterogeneous

<ANVIDIA.



Size (approx) Growth (rel)

Fortran 90,000 -11%

<ANVIDIA.



Parallel Programming is Easy

forall molecule in set: # 1E6 molecules
forall neighbor in molecule.neighbors: # 1E2 neighbors ea
forall force in forces: # several forces
# reduction

molecule.force += force(molecule, neighbor)

<ANVIDIA.



We Can Make It Hard

pid = fork() ; // explicitly managing threads

lock(struct.lock) ; // complicated, error-prone synchronization
// manipulate struct
unlock(struct.lock) ;

code = send(pid, tag, &msg) ; // partition across nodes

<ANVIDIA.



Programmers, Tools, and Architecture
Need to Play Their Positions

Programmer

Architecture

<ANVIDIA.



Programmers, Tools, and Architecture
Need to Play Their Positions

Algorithm
All of the parallelism

ACH IS Abstract locality

Combinatorial optimization
Mapping
Selection of mechanisms

Fast mechanisms
Architecture Exposed costs

<ANVIDIA.



OpenACC: Easy and Portable

doi=1, 20*128 \
doj=1, 5000000
fa(i) = a * fa(i) + fb(i)
end do
Gnd do Serial Code: SAXPY)

(s

ISacc parallel loop
doi=1, 20*128
IdirS unroll 1000
doj=1, 5000000

fa(i) = a * fa(i) + fb(i)
end do

\end do

<ANVIDIA
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Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

Source: C Moore, Data Processing in ExaScale-ClassComputer Systems, Salishan, April 2011 @2 NVIDIA.



Parallelism is the source of all performance
Power limits all computing
Communication dominates power

<ANVIDIA.



Two Challenges

Power

25x Efficiency
with 2.2x from process

Programming
Parallelism
Heterogeneity
Hierarchy

<ANVIDIA.
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Programming
Parallelism
Heterogeneity
Hierarchy

Programmer

Architecture
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“Supér” Computing

From Super Computers to Super Phones



Communication Takes
More Energy Than Arithmetic

8 20mm o
64-bit DP DR
200 256pJ 16 nJ Rd/Wr
256-bit buses Efficient
500 pJ off-chip link
256-bit access
8 kB SRAM

<ANVIDIA.



Key to Parallelism:
Independent operations on independent
data

sum(map(multiply, x, x))

1

every pair-wise multiply is independent
parallelism is permitted

<ANVIDIA.



Key to Locality:

Data decomposition should drive mapping

,
Flat computation

total = sum(x)

VS.

tiles = split(x)
partials = map(sum, tiles)
total = sum(partials)

<ANVIDIA.



Key to Locality:

Data decomposition should drive mapping

total = sum(x)

VS.

-
Explicit decomposition

tiles = split(x)
partials = map(sum, tiles)
total = sum(partials)

J

<ANVIDIA



