&’ -
S T
-

f X , SS S
! \ o N e . R
4 N I8 — BT U St i, i O SR W \" —
/| / . -1 N \ \-'— % _:" ‘ 0 - *"': _— : N
) 4 / \ X S RN \\

A \
J. T ~ ~
<A NVIDIA.

THE PATH TO HIGH-EFFICIENCY COMPUTING

Bill Dally | Chief Scientist and SVP, Research NVIDIA | Professor (Research), EE&CS, Stanford

Scientific Discovery
and Business Analytics —

Driving an Insatiable Demand for o s Ot - Time Trnds b il nd Faut Types
More Computing Performance = ~

i Tableau WORKBOOKS FAVORITES RECENTS GALLERY
+

0il Cumulative (kbbl)

)
D
I]
o

4:54%

<ANVIDIA.

<ANVIDIA.

COVITMN OOV ITMN—-QO

NOILIONNS Q3LVHO3INI ¥3d
SIN3INOJWOD 40 Y3BWNN
3H1 40 2901

In The Past,
Demand Was Fueled
by Moore’s Law

<ANVIDIA.

Source: Moore, Electronics 38(8) April 19, 1965

10000000

1000000 .
100000 e | [—Perf (psiins)

~
10000 - Linear (ps/Inst)

ILP Was Mined Out [
in 2001 |

1990 2000 2010

Source: Dally et al. “The Last Classical Computer”, ISAT Study, 2001 <ANVIDIA.

€6 . .
Moore’s Law gives us more transistors...
. b 3
Dennard scaling made them useful.

ml\ Bob Colwell, DAC 2013, June 4, 2013

<ANVIDIA.

)

“ts ...;I«s...

w
- |
i

<ANVIDIA.

Moore, ISSCC Keynote, 2003

Source

Moore’s law is alive and well, but...

Instruction-level parallelism (ILP) was
mined out in 2001

Voltage scaling (Dennard scaling) ended

Summary 2005

Most power is spent on communication

What does this mean to you?

<ANVIDIA

T H B F UTURE o F

COMPUTING PERFORMANCE
!

Sk L : : : Transistors
' 1 1 (thousands)

Single-thread
Performance
(SpecINT)

The End SR N N AR <<% 11 T T
of Historic Scaling T e

(Watts)

Number of
Cores

1975 1980 1985 1990 1995 2000 2005 2010 2015

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

Source: C Moore, Data Processing in ExaScale-ClassComputer Systems, Salishan, April 2011 <ANVIDIA.

In the Future

All performance is from parallelism

Machines are power limited
(efficiency IS performance)

Machines are communication limited
(locality IS performance)

<ANVIDIA.

18,688 NVIDIA Tesla K20X GPUs
TITAN 27 Petaflops Peak: 90% of Performance from GPUs
~ 17.59 Petaflops Sustained Performance on Linpack

SANVIDIA.

You Are Here

o = AT

2020

1,000PF (50x)

72,000HCNs (4x)
20MW (2x)
20PF 50 GFLOPS/W (25x)
18,000 GPUs ~10" Threads (1000x)
10MW
2 GFLOPs/W
~10" Threads

<ANVIDIA.

Two Major Challenges

Energy Efficiency

25x in 7 years
(~2.2x from process)

Programming
Parallel (10" threads)
Hierarchical
Heterogeneous

<ANVIDIA.

40 —Needed

35 ==Process

e e

2013 2014 2015 2016 2017 2018 2019 2020

<ANVIDIA.

—=Needed

==Process

-
o

GFLOPS/W

1
2013 2014 2015 2016 2017 2018 2019 2020

<ANVIDIA.

How is Power Spent in a CPU?

In-order Embedded 000 Hi-perf

ALU Data
Supply
5%

Dally [2008] (Embedded in-order CPU) Natarajan [2003] (Alpha 21264)

<ANVIDIA.

Energy Shopping List

Processor Technology 40 nm 10nm
Vdd (nominal) 0.9V 0.7V
DFMA energy 50 pJ 7.6 pJ
64b 8 KB SRAM Rd 14 pJ 2.1pJ
Wire energy (256 bits, 10mm) 310 pJ 174 pJ
Memory Technology 45 nm 16nm
DRAM interface pin bandwidth 4 Gbps 50 Gbps
DRAM interface energy 20-30 pJ/bit 2 pJ/bit
DRAM access energy 8-15 pJ/bit 2.5 pJ/bit

Keckler [Micro 2011], Vogelsang [Micro 2010]

,

i

FP Op lower bound

4 pJ

<ANVIDIA

o FSI
A LSI (200 mV)
+ LSI (400 mV)
x CDI
< SCI

0-0-0-0-0-0-00

—
—)
R
£
£
S
()]
Q.
=
e}
j -
Q
(o}
>
(2]
S
(]
c
Ll

+-+-+-++ +++4—&—H-*+’$
noooosl

AAANAA

1.0 1.2 1.4

Maximum Frequency (GHz)

<ANVIDIA.

=—=Needed
==Process
Z 10
oo
®)
824
L
(G
1
2013 2014 2015 2016 2017 2018 2019

2020

<ANVIDIA.

- * - in-order, 1-issue
- 8- jn-order, 2-issue
- ¢- in-order, 4-issue
—e— out-of-order, 1-issue
—a— out-of-order, 2-issue
—o— out-of-order, 4-issue

O
o

o
o

Simpler Cores
= Energy Efficiency

-y
(41
o

_—
c
o

=
O
=
E

=]
N

=
o
Q
Q.

-
o

L
>
O
T
Q
c

L

in-order
4-issue
in—order, 2-issue _:

800 1000 1200 1400 1600 1800 2000
Performance (MIPS)

Source: Azizi [PhD 2010] <ANVIDIA.

CPU : GPU

1690 pJ/flop 140 pJ/flop
Optimized for Latency Optimized for Throughput
Caches Explicit Management

of On-chip Memory

Westmere Kepler
32 nm 28 nm

<ANVIDIA.

Latency-Optimized Core Throughput-Optimized Core
(LOC) (TOC)

PCs &7

Register

Rename

Instruction
Window

Register File

Reorder Buffer

<ANVIDIA.

Ma‘”3'§e§§,f§£ e 15% of SM Energy

SIMT Lanes

Shared Memory
32 KB

Streaming Multiprocessor (SM)

<SANVIDIA.

Percent of All Values Produced

100%

80%

60%

40%

20%

0%

Hierarchical Register File

EEEEE

¥ Read >2 Times
¥ Read 2 Times
E Read 1 Time

E Read 0 Times

N (““\a@o“ W W e
S\

Percent of All Values Produced

100%

80%

60%

40%

20%

¥ Lifetime >3
¥ Lifetime 3
¥ | ifetime 2

E | ifetime 1

<ANVIDIA.

(2
@, ‘m
) ¢
s B K
RS
{ 2

@

r

Operand Bufferin

<ANVIDIA.

W2 Level HW

W 3 Level HW
2 Level SW
W 3 Level SW
1 2 3 4 5 6 7 8

Number of ORF/RFC Entries per Thread

o
o))

Energy Savings

from RF Hierarchy
54% Energy Reduction

©
>

and Wire Energy

v
wv
]
Q
Q
<
©
]
N
T
£
-
o}
=2

©
N

Source: Gebhart, et. al (Micro 2011) <ANVIDIA.

—=Needed
==Process
Z 10 —
geeseoccocoocooo o T e T T ICIRCUITS]|
®)
2ai |
L
(G
1

2013 2014 2015 2016 2017 2018 2019 2020

<ANVIDIA.

Two Major Challenges

Energy Efficiency

25x in 7 years
(~2.2x from process)

Programming
Parallel (10" threads)
Hierarchical
Heterogeneous

<ANVIDIA.

Size (approx) Growth (rel)

Fortran 90,000 -11%

<ANVIDIA.

Parallel Programming is Easy

forall molecule in set: # 1E6 molecules
forall neighbor in molecule.neighbors: # 1E2 neighbors ea
forall force in forces: # several forces
reduction

molecule.force += force(molecule, neighbor)

<ANVIDIA.

We Can Make It Hard

pid = fork() ; // explicitly managing threads

lock(struct.lock) ; // complicated, error-prone synchronization
// manipulate struct
unlock(struct.lock) ;

code = send(pid, tag, &msg) ; // partition across nodes

<ANVIDIA.

Programmers, Tools, and Architecture
Need to Play Their Positions

Programmer

Architecture

<ANVIDIA.

Programmers, Tools, and Architecture
Need to Play Their Positions

Algorithm
All of the parallelism

ACH IS Abstract locality

Combinatorial optimization
Mapping
Selection of mechanisms

Fast mechanisms
Architecture Exposed costs

<ANVIDIA.

OpenACC: Easy and Portable

doi=1, 20*128 \
doj=1, 5000000
fa(i) = a * fa(i) + fb(i)
end do
Gnd do Serial Code: SAXPY)

(s

ISacc parallel loop
doi=1, 20*128
IdirS unroll 1000
doj=1, 5000000

fa(i) = a * fa(i) + fb(i)
end do

\end do

<ANVIDIA

c
2
%)
=
o
c
@
)

<ANVIDIA.

Transistors
(thousands)

Single-thread
Performance
(SpeciINT)

The End

Typical Powef

of Historic Scaling Pt v el

Cores

1975 1980 1985 1990 1995 2000 2005 2010 2015

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

Source: C Moore, Data Processing in ExaScale-ClassComputer Systems, Salishan, April 2011 @2 NVIDIA.

Parallelism is the source of all performance
Power limits all computing
Communication dominates power

<ANVIDIA.

Two Challenges

Power

25x Efficiency
with 2.2x from process

Programming
Parallelism
Heterogeneity
Hierarchy

<ANVIDIA.

GFLOPS/W

Power
25x Efficiency

with 2.2x from process

=—rNeeded
=+Process
10 e — —
/
[/
/] e e R X ?
|

2013 2014 2015 2016 2017

2018

2019

2020

Programming
Parallelism
Heterogeneity
Hierarchy

Programmer

Architecture

<ANVIDIA.

N

o N
e o

“Supér” Computing

From Super Computers to Super Phones

Communication Takes
More Energy Than Arithmetic

8 20mm o
64-bit DP DR
200 256pJ 16 nJ Rd/Wr
256-bit buses Efficient
500 pJ off-chip link
256-bit access
8 kB SRAM

<ANVIDIA.

Key to Parallelism:
Independent operations on independent
data

sum(map(multiply, x, x))

1

every pair-wise multiply is independent
parallelism is permitted

<ANVIDIA.

Key to Locality:

Data decomposition should drive mapping

,
Flat computation

total = sum(x)

VS.

tiles = split(x)
partials = map(sum, tiles)
total = sum(partials)

<ANVIDIA.

Key to Locality:

Data decomposition should drive mapping

total = sum(x)

VS.

-
Explicit decomposition

tiles = split(x)
partials = map(sum, tiles)
total = sum(partials)

J

<ANVIDIA

