
THE PATH TO HIGH-EFFICIENCY COMPUTING
Bill Dally | Chief Scientist and SVP, Research NVIDIA | Professor (Research), EE&CS, Stanford

Scientific Discovery
and Business Analytics

Driving an Insatiable Demand for
More Computing Performance

Compute Communication Memory &
Storage

HPC Analytics

Source: Moore, Electronics 38(8) April 19, 1965

In The Past,
Demand Was Fueled

by Moore’s Law

Source: Dally et al. “The Last Classical Computer”, ISAT Study, 2001

ILP Was Mined Out
in 2001

0.0001
0.001

0.01
0.1

1
10

100
1000

10000
100000

1000000
10000000

1980 1990 2000 2010 2020

Perf (ps/Inst)
Linear (ps/Inst)

19%/year 30:1

1,000:1

30,000:1

“Moore’s Law gives us more transistors…

Dennard scaling made them useful.”

Bob Colwell, DAC 2013, June 4, 2013

Source: Moore, ISSCC Keynote, 2003

Voltage Scaling
Ended in 2005

Moore’s law is alive and well, but…
Instruction-level parallelism (ILP) was
mined out in 2001

Voltage scaling (Dennard scaling) ended
in 2005

Most power is spent on communication

What does this mean to you?

Summary

Source: C Moore, Data Processing in ExaScale-ClassComputer Systems, Salishan, April 2011

The End
of Historic Scaling

All performance is from parallelism

Machines are power limited
(efficiency IS performance)

Machines are communication limited
(locality IS performance)

In the Future

18,688 NVIDIA Tesla K20X GPUs
27 Petaflops Peak: 90% of Performance from GPUs
17.59 Petaflops Sustained Performance on Linpack

TITAN

20PF
18,000 GPUs

10MW
2 GFLOPs/W
~107 Threads

You Are Here

1,000PF (50x)
72,000HCNs (4x)

20MW (2x)
50 GFLOPs/W (25x)

~1010 Threads (1000x)

2013

2020

Two Major Challenges

Programming
Parallel (1010 threads)

Hierarchical

Heterogeneous

Energy Efficiency
25x in 7 years

(~2.2x from process)

0

5

10

15

20

25

30

35

40

45

50

2013 2014 2015 2016 2017 2018 2019 2020

G
F
LO

P
S/

W

Needed

Process

EFFICIENCY GAP

1

10

2013 2014 2015 2016 2017 2018 2019 2020

G
F
LO

P
S/

W

Needed

Process

How is Power Spent in a CPU?

In-order Embedded OOO Hi-perf

Clock + Control Logic
24%

Data Supply
17%

Instruction Supply
42%

Register File
11%

ALU 6%
Clock + Pins

45%

ALU
4%

Fetch
11%

Rename
10%

Issue
11%

RF
14%

Data
Supply
5%

Dally [2008] (Embedded in-order CPU) Natarajan [2003] (Alpha 21264)

Processor Technology 40 nm 10nm

Vdd (nominal) 0.9 V 0.7 V

DFMA energy 50 pJ 7.6 pJ

64b 8 KB SRAM Rd 14 pJ 2.1 pJ

Wire energy (256 bits, 10mm) 310 pJ 174 pJ

Memory Technology 45 nm 16nm

DRAM interface pin bandwidth 4 Gbps 50 Gbps

DRAM interface energy 20-30 pJ/bit 2 pJ/bit

DRAM access energy 8-15 pJ/bit 2.5 pJ/bit

Keckler [Micro 2011], Vogelsang [Micro 2010]

Energy Shopping List

FP Op lower bound
=

4 pJ

● ● ● ● ● ● ● ● ●●●
● ● ● ● ● ●

●●
●

●
●

●

●●

●

●

0.6 0.8 1.0 1.2 1.4 1.6 1.8

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

Maximum Frequency (GHz)

E
n

e
rg

y
 p

e
r

b
it

 p
e
r

m
m

 (
fJ

)

● FSI

LSI (200 mV)

LSI (400 mV)

CDI

SCI

CIRCUITS
3X

PROCESS
2.2X

1

10

2013 2014 2015 2016 2017 2018 2019 2020

G
F
LO

P
S/

W

Needed

Process

Simpler Cores
= Energy Efficiency

Source: Azizi [PhD 2010]

CPU
 1690 pJ/flop
Optimized for Latency

Caches

Westmere
32 nm

GPU
140 pJ/flop

Optimized for Throughput
Explicit Management
of On-chip Memory

Kepler
28 nm

Throughput-Optimized Core
(TOC)

Latency-Optimized Core
(LOC)

PC

PC

Branch
Predict

I$

Register
Rename

ALU 1 ALU 2 ALU 4 ALU 3

Reorder Buffer

Instruction
Window

ALU 1 ALU 2 ALU 4 ALU 3

I$

Select

Register File

PCs

Register File

SIMT Lanes

Streaming Multiprocessor (SM)

Warp Scheduler

Shared Memory
32 KB

15% of SM Energy Main Register File
32 banks

ALU SFU MEM TEX

Hierarchical Register File

0%

20%

40%

60%

80%

100%

Pe
rc

en
t

of
 A

ll
Va

lu
es

 P
ro

du
ce

d

Read >2 Times

Read 2 Times

Read 1 Time

Read 0 Times

0%

20%

40%

60%

80%

100%

Pe
rc

en
t

of
 A

ll
Va

lu
es

 P
ro

du
ce

d

Lifetime >3

Lifetime 3

Lifetime 2

Lifetime 1

Register File Caching (RFC)

S
F
U

M
E
M

T
E
X

Operand Routing

Operand Buffering

MRF
4x128-bit Banks (1R1W)

RFC 4x32-bit
(3R1W) Banks

ALU

Energy Savings
from RF Hierarchy
54% Energy Reduction

Source: Gebhart, et. al (Micro 2011)

1

10

2013 2014 2015 2016 2017 2018 2019 2020

G
F
LO

P
S/

W

Needed

Process

CIRCUITS
3X

PROCESS
2.2X

ARCHITECTURE
4X

Two Major Challenges

Programming
Parallel (1010 threads)

Hierarchical

Heterogeneous

Energy Efficiency
25x in 7 years

(~2.2x from process)

Skills on LinkedIn Size (approx) Growth (rel)

C++ 1,000,000 -8%

Javascript 1,000,000 -1%

Python 429,000 7%

Fortran 90,000 -11%

MPI 21,000 -3%

x86 Assembly 17,000 -8%

CUDA 14,000 9%

Parallel programming 13,000 3%

OpenMP 8,000 2%

TBB 389 10%

6502 Assembly 256 -13%
Source: linkedin.com/skills (as of Jun 11, 2013)

Mainstream
Programming

Parallel and
Assembly

Programming

forall molecule in set: # 1E6 molecules
 forall neighbor in molecule.neighbors: # 1E2 neighbors ea
 forall force in forces: # several forces
 # reduction
 molecule.force += force(molecule, neighbor)

Parallel Programming is Easy

We Can Make It Hard

pid = fork() ; // explicitly managing threads

lock(struct.lock) ; // complicated, error-prone synchronization
// manipulate struct
unlock(struct.lock) ;

code = send(pid, tag, &msg) ; // partition across nodes

Programmers, Tools, and Architecture
Need to Play Their Positions

Programmer

Architecture Tools

Programmers, Tools, and Architecture
Need to Play Their Positions

Algorithm
All of the parallelism
Abstract locality

Fast mechanisms
Exposed costs

Combinatorial optimization
Mapping
Selection of mechanisms

Programmer

Architecture Tools

OpenACC: Easy and Portable

!$acc	 parallel	 loop	
do	 i	 =	 1,	 20*128	
	 	 	 	 	 !dir$	 unroll	 1000	
	 	 	 	 	 	 do	 j	 =	 1,	 5000000	
	 	 	 	 	 	 	 	 	 	 fa(i)	 =	 a	 *	 fa(i)	 +	 <(i)	
	 	 	 	 	 	 end	 do	
end	 do	

do	 i	 =	 1,	 20*128	
	 	 	 	 	 do	 j	 =	 1,	 5000000	

	 fa(i)	 =	 a	 *	 fa(i)	 +	 <(i)	
	 	 	 	 	 end	 do	
end	 do	 Serial	 Code:	 SAXPY	

Conclusion

Source: C Moore, Data Processing in ExaScale-ClassComputer Systems, Salishan, April 2011

The End
of Historic Scaling

Parallelism is the source of all performance
Power limits all computing

Communication dominates power

Two Challenges

Programming
Parallelism

Heterogeneity

Hierarchy

Power
25x Efficiency

with 2.2x from process

Programmer

Architecture Tools

Programming
Parallelism

Heterogeneity

Hierarchy

Power
25x Efficiency

with 2.2x from process

“Super” Computing
From Super Computers to Super Phones

64-bit DP
20pJ 26 pJ 256 pJ

1 nJ

500 pJ Efficient
off-chip link

256-bit buses

16 nJ DRAM
Rd/Wr

256-bit access
8 kB SRAM 50 pJ

20mm

Communication Takes
More Energy Than Arithmetic

Key to Parallelism:
Independent operations on independent

data

sum(map(multiply, x, x))

every pair-wise multiply is independent
parallelism is permitted

Flat computation

Key to Locality:
Data decomposition should drive mapping

total = sum(x)

vs.

tiles = split(x)
partials = map(sum, tiles)
total = sum(partials)

Explicit decomposition

Key to Locality:
Data decomposition should drive mapping

total = sum(x)

vs.

tiles = split(x)
partials = map(sum, tiles)
total = sum(partials)

