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Outline

* Why additive manufacturing?
— Definition, Perspective & Potential Advantages
— What is the relevance to high performance computing?

 What are the needed science & technology breakthroughs?
— Scope: Example: Electron Beam Melting Powder Bed Process
— Quantum Level Modeling [energy and material interactions]
— Physical Process Modeling [fluid & heat flow, phase transitions]
— Spanning the Length and Time Scale Resolution [108 scans/m?]
— Experimental measurements (e.g. Neutrons & microscopy) towards
Qualification
* Technology Transfer to Industries

« Summary and Conclusions
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Current: Powder to Parts
Future AM: Molecule to Parts Current

» Definition: Small lot manufacturing
by addition of “basic” building haskerlill?dding of
: ickel Alloys; From
blocks; Atoms, Molecules, Powders, 5 e to Seiid

and Laminates Ref: EWI

* Some processes: Stereo-
lithography, selective laser
sintering, fused deposition
modeling, Powder Metal
Deposition, 3DPrinting, Multi-jet E;Ondo‘ﬁ“gfems
Modeling, and Laminated Object from méecmes o

Manufacturing profducts
Ref: NanoRex
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Traditional manufacturing is established
and integrated computational materials
engineering tools are being deployed to

accelerate innovation.

Reduction
Of Ore

Primary
Metal
Production

Metal
Casting

Rolling

Alloys

Integrated
Computational
Materials

> Forging

Secondary
Metal
Production

Heat
Treatment

Service

Engineering
A Transformational
' Discipline for Improved

Welding

Recycling Route

* Then, what are the advantages of

additive manufacturing?
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Motivation: By providing design flexibility, Additive
Manufacturing is considered as the Renaissance
of US manufacturing across the Small-, Medium-,

and Large-Scale Industries

i Hybrids are -
now possible! %

|||||||

Auto giant harnesses new super-scale laser-fusing technologies t

Young's modulus, E (GPa)

Daimler Dives into Additive Manufacturing

Replace Die Casting &

T Wwith AM

——— Flexible polymer -ax 7

FIGURE 4 Two complex frusses suggest the difficultly of predicive onalysis.

Additive Munufucturmg in Aerospace

Examples and Research Outlook

Challenge: Difficulty
in Predictive Analyses

S

Embedded
Electronics

There are many additive
manufacturing
processes

* Qur focus: Facilitate the adoption of this technology as quickly as possible

» What are the challenges?
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Process: Laser
Additive
Manufacturing

Original concept developed by
Department of Energy Laboratories

Commercial systems are available
(e.g. OPTOMEC)

* Key Process Variables:
— Laser power

Travel Speed

Powder Characteristics

Build path

Pressing, Heat Treatments)
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Additional Processing (e.g. Hot Isostatic

Process Z
cootdila!e_y_stem

Deposition nozzle —

|laser
Pre-alloyed or mixed

Re-solidified elemental powders

titanium alloy Powder/laser

interaction

Molten titanium

Prior Passes alloy puddle

\ %
\
\ ’
N /

¢ Direction of Part Motion

Photo courtesy of Kelly, S. (2004). Thermal and
Microstructure Modeling of Metal Deposition
Processes with Application to Ti-6Al-4V.

 Challenges

— Microstructure evolution
Mechanical Heterogeneity
Poor Properties in Z-direction
Residual Stress
Distortion
Surface Roughness
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Mechanical anisotropy and poor
properties are observed in z-direction

From: Kobryn, Semiatin, 2001 1000 Courtesy: Applied Optimization
oo | (\/H;p’ HIP’ed Y
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* Anisotropy is a function of material thermal path.

« Thermal path of deposit material is non-uniform Eur:jdar?en;gl e
« HIP is not feasible for all additive deposits nderstanding ot the
Property

» This poses a challenge in part qualification —

« Trial and error optimization is not possible. However, computational
optimization is feasible.
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By integrating process, material modeling,
in-situ, ex-situ characterizations, we have
developed innovative processing routes.
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 However, this engineering solution was developed after many
years of research. Can we accelerate this innovation?
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Let us take a popular

additive manufacturing
process: Electron Beam
Powder Melting Process
(ARCAM)

In-situ
imaging of
electron
beam raster

Bulldtank — |

Build
platform
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Details of Technical and Typical data showing

spatial variations of

Scientific Challenges: temperature within a

layer

 Thermal Conditions
— Coupling of Energy Source with Feed Stock

— Wide Range of 6T/0x & dT/dt =»Microstructural &
Residual Stress Gradients

Visible

* Microstructural Heterogeneity
— Solidification — Crystal Orientation =» Anisotropy
— Solid-State Phase Transformation =» Heterogeneous
Microstructure
* Mechanical Heterogeneity
— Due to different precipitation kinetics =»Residual Stress
— Locked in Residual Stresses =» Pre-existing Cracks
— Fatigue Properties =» Inferior to Traditional Manufacturing

— Unreliable mechanical properties =»Need for Secondary
Process
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Basic Steps of Computational Transient
Thermo-Mechanical Modeling

Heat and Mass Liquid to Solid
Transfer Predicts the Transformation

Solid to Solid
Transformations

Residual Stress and
Distortion

molten shape and
thermal cycles

*Energy *Shape *Thermal and *Restraints
*Speed «Temperature gradient Mechanical Transients «Post-Process Heat
*Materials *Liquid Solid Interface *Chemistry Treatments
Velocity *Properties
800 - T
—mu— standard model

E : —— enhanced model

g

or  n [0°T 82T O*T
ot [(9)(2 0y? 822 ]
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ox*>  Oy* 07
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200

Longitudinal residual stress (MPa)

o
1

pV(V.V) = —VP + uV.(VV) + (Sy — pV.(U,V))

0 2 4 6 8 10 12 14 16 18 20

Distance from weld centerline (mm)

k
PV (V.h) = V. (— Vh> + S+ S — pV.(Ush)

Cp

Let us evaluate individual steps
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Electron and Materials Interactions

Ref: Schiller and Panzer, 1988 « Beam interaction may lead to

Electron beam Electron ener partial sintering, full sintering,
r ° ' .
Energy eUg e g9y partial melting and full
* Thermal
equilibrium lag
! time

__Energy absorption layer S{Up,

] b * Heat Transferin a

Heat conduction 2 trans_.lent porous

U O I B media

Ref: Ramirez
et al (2011);
MSEA
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Electron-Particle Interaction Sub-model

Goal: Obtain the energy input required inthe
heat transfer model

Theory: (Rutherford & Mott)

— Primary electrons

— Secondary electrons

— Back-scattered primary electrons

— Back-scattered secondary electrons

Approach: 3D Monte Carlo simulation |

Input:
 Particle amount; 354

« Particle diameter: 40-70 ym randomly distributed
* Pack density = 65~85%

* Electron beam diameter = 150 ym

« Electron energy = 20 KeV

 Amount of simulated primary electron = 5x10°

Output:

Pack density 65% 75% 85% 3 min
o
Predicted absorption o o o &
coefficient 77.67% 77.41% 77.02%
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Heat and Mass Transfer: Commercial Softwares are
not Scalable for Additive Manufacturing (101° scans
per m3)

1045

[ 1 T Ref: Lim et al
(2010)

Sian Width,
10 1

200 molten beads
in 1mm X 1mm
cross section

o

03

0.50 1.18 1.86 . 254 3.22 3.90

3-mm weld pool motion simulation
takes more than 48 hours in a
high-end computer using a
commercial fluid dynamics
software!

log (Scan Height, m)
w ‘ybiaH ueog

 We need to develop a radically
advanced HPC model for the AM
process using innovative
mathematical algorithms for up
scaling (e.g., TRUCHAS)

log (Scan Width, m)
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Solidification conditions, high- temperature
gradients (AT/Ax=10° K/m) and velocities
(Ax/At= 3 m/s), lead to crystallographic and

)

¢ | St 4
w (Um
|

//

Y
 Phase field models have to be accelerated to i
capture these small-scale transients over 20 o Ref: Yuan
large build volumes. etal (2013)
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Solid-state transformations are affected
by repeated thermal cycling; Leads to
M- and nm- scale heterogeneities

» Existing material models, can consider either
um-scale or nm-scale changes; Seamless
Integration across the scale appears to be
elusive!
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Residual stress distribution in
IN718 build are compressive
after Hot Iso-static Pressing.

Top of build &:é P -1038 195
I ¥ |
| Wldth
1 H I P HB- 2B/NRSF2 area: overhead
209 crane for mounting large
t specimens or accessories

18 4

* Ability to process the
measured data and
analyze with reference
to mathematical
models still is manual
and often time

16 4

14 -

12 4

10

length(mm)

" consuming!
] Compressive
) Mao ) SW;‘“S‘m?“)7 v 1 154 _
* Ref: Watkins et al (2013) R.S. in height R.S. in height Tensile

e JNIVERSITYof TENNESSEE WF xnoxviLLE % OAK RIDGE NATIONAL LABORATORY

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE




Vision and Proposed Approach

Thermography Adopt HPC Adopt
Experiments TRUCHAS HPC AMP
from MDF Model Model

¥

¥

¥

Calculation of Calculated
Thermo- Distortion and
Mechanical Spatial
Transients in Distribution of
HPC Models Residual Stress

Describing

Calculation of
Heat and Mass
Transfer in HPC e
Models

Energy
Interaction with
Powder
Particles

* Deliverable: Develop and Deploy a . f
framework for scalable, verified, and Adopt OSU/ Verify and
validated HPC model for emerging AM  UTK Phase Validate
user and application base within Transformation ~ Residual Stress

_ . : Models Distribution Ni-
ORNL's “Additive Manufacturing Alloys using
Computational End Station” HFIR and SNS
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Why open source
HPC software?

TrRuUcHAS Users Manual

 Example: Adaptation of TRUCHAS-
Solving for conservation of mass-
momentum and energy + Thermo/Kinetics
for powder bed manufacturing

« “TRUCHAS’ software can be modified to
simulate Thermo-Fluid-Mechanical-Material
Interactions by coupling with AMP and
Material Models

« Significance: Coupling of heat and mass
transfer, elastic and plastic deformation,
verification methodologies
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Reality of Interest
omponent, Sub-assembly, assembly or Syste

D

Abstraction <
v
,
Conceptual -
Mathematical Model Physical
Modeling Modeling
{ J N { & N E
»| Mathematical Physical g
s Moldel L Model §
- ]
g g Implementation Implementation §
§ v v o
4 i ) { N\ 3
>. Computational Preliminary Experiment 3
: Model Calculation (  Design £
§ 5 I ! %
E 8 Calculation Experimentation =
TE )
83 o
Simulation Experimental &
Results Data 2
- ~ Validation —~ o 2
Uncertainty Uncertainty o
Quantification Quantitative Quantification
¥ Comparisons Y
Simulation Experimental
Outcomes Outcomes
Acceptable

Agreement No

C Next Reality of interest in the Hierarchy )

Figure 1—Verification and Validation Activities and Products (Source:
Reprinted, with permission, from ASME, V&V 10-2006, New York: ASME, Figure
1 (page 6).
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Step 1: Scientific Impact: HPC Model development in
conjunction with rapid qualification of parts by probing in

3D with multi-scale resolution

Example Tomography data /
from UAM part i zSN

SPALLATION SEUTRON SOURCE
- c' —

R L W N 7,
1 1_A_Cu recl 044 bmps_ £
AL BT L~ X R AR >

Can we qualify the
parts within 48
hrs?

Front-End Systems 4 Accumulator Ring
(Lowrence Berkeley) (Srookkaven)

 Target
W {Oak Ridge)

Instrument Systems
(Argoane and Ook Ridge)

2200 2i00  2s0 280 3000 Undergraduate Student
Residual Stress, Microstructure & Trainin
Mechanical Heterogeneity 9
ORNL (e.g. SNS, HTML, ShaRe) & Joint | o aduate Student
e.g. , , ShaRe oin
Institute for Advanced Materials Research
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Step 2: Industrial Impact: Deploy calibrated models for all
additive manufacturing processes through cloud based
services

g Front-end End users
. | Can we optimize the processes
Geometry Welding parameters Plots : within 24 hrs? :
[ — — 1

User subroutines for

welding simulation Undergraduate Stent Training
------------------------------- | Graduate Student Research

P — l: ________ e I: _——
-------------------- ﬁ
I Supercomputer |
I hi
| ABAQUS/CAE "™ ABAQUS/VIEWER |
I
| } o
: Mesh Results !
1
: | t l
| ABAQUS/STANDARD :
I ¥
: t :
! 1
I |
I 1
I

 E-WeldPredictor® architecture — EWI/OSU/OSC Research:

- Ref: US Patent: 8,301,286B@: Babu et al., (2012) Remote High
Performance Computing Materials Joining and Material Forming
Modeling System and Method
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Step 3: Phased Development for AM

Computational Closed-Loop Control
Integrated Closed-Loop AM Process

Target Structure
and Properties

Validate and Improve Online
Reduced Models as Needed using Models Running
Data and Detailed Models on HPC on HPC
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Step 4: Deploy the additive manufacturing
processes to large number of small-scale

manufacturers

Non-Profit

Can we deploy AM
process within 1
month?

OEM |/ | wiit/=
Parts | Y{\\ ==

Small, Medium
and Large
Scale
Industries

Universities

» Suit of Additive Manufacturing Tools
Demonstration within one building

exists now in Tennessee

 MDF can act as a bridge between
OEM and Small businesses
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Community Colleges
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Training
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Summary and Conclusions

- Additive manufacturing: Potential to accelerate
the dream-design-create-deploy innovation life-
cycle

due to spatially (um to nm) and temporally Developments
(<10 s to 1 min) varying chemical, thermal and
mechanical gradients

- Scientific Challenges: Mechanical heterogeneity | p ocess Centric

* Vision & Steps: Develop and deploy verified and
validated open domain HPC models

Design Centric
» Expected Breakthrough: Fundamental Developments

understanding of heterogeneity in all additive
manufacturing processes, as well as, innovation
to eliminate the same
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MDF Thrust Area

Additive Manufacturing

MeAtaI

(

Electron Ultrasonic Additive
Beam Melting Manufacturing

* Developing in-situ
characterization, feedback
and control

* Precision melting
of powder materials

* Processing of complex
geometries not possible
through machining

+ Simultaneous additive
and subtractive
process
for manufacturing
complex geometries

* Solid-state process
allows embedding
of optical fibers
and sensors

(/\5 B6 b

Manufacturing Demonstration Facility

Pol)imer

\ ( \
Laser Metal Fused Deposition
Deposition Modeling

/I
/,'

+ Site-specific
material addition

* Application of advanced
coating materials
for corrosion
and wear resistance

* Repair of dies, punches,
turbines, etc.

* Development
of high-strength composite
materials for industrial
applications

* Precision deposition
of thermoplastic materials

Working with AM equipment providers to develop high-performance materials, low-cost feedstock, processing

techniques and in-situ characterization and controls to enable broad dissemination of technologies
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We have wide range of processes to
make 3D metallic parts.

eys . OPTOMEC

Arcam AB’ Additive Manufacturing Systems—trom NANO to MACRO™

LENS
Repairing Hub

- Based on Feedstock & Energy Source
— Powders, Wires, & Tapes
— Laser, Electron Beam, Arc, and Ultrasonic

* Are they mature? Do we have scientific
and technical challenges?
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