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Quantum-­‐HPC	
  hybrid	
  	
  systems	
  
require	
  programming	
  principles	
  
akin	
  to	
  current	
  accelerator	
  models.	
  
But	
  how	
  will	
  performance	
  compare	
  
to	
  predic?ons?	
  Performance	
  
depends	
  on	
  programming	
  models	
  
as	
  well	
  as	
  quantum	
  technology.	
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QCI	
  serves	
  as	
  the	
  interac?on	
  point	
  for	
  CCSD	
  resources	
  in	
  
quantum	
  compu?ng.	
  We	
  have	
  a	
  broad	
  emphasis	
  on	
  
theory,	
  computa?on,	
  and	
  experiment	
  for	
  the	
  research	
  
and	
  development	
  of	
  quantum	
  compu?ng	
  systems.	
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Quantum	
  Compu?ng	
  (QC)	
  leverages	
  quantum	
  physics	
  to	
  
solve	
  problem	
  more	
  efficiently,	
  quickly,	
  and	
  accurately.	
  
It	
  redefines	
  feasibility	
  for	
  scien?fic	
  discovery.	
  

Advantages:	
  Algorithmic	
  Speedups	
  

Challenges:	
  Technological	
  Precision	
  and	
  Scale	
  
Individual	
  atoms,	
  electrons,	
  and	
  photons	
  are	
  the	
  basis	
  
for	
  QC	
  technology.	
  System	
  engineering	
  requires	
  precise	
  
control	
  and	
  fabrica?on	
  at	
  the	
  atomic	
  level.	
  

4-­‐qubit	
  superconduc;ng	
  chip	
  
Credit	
  IBM	
  (USA)	
  

Monolithic	
  3D	
  trapped	
  ion	
  qubits	
  
Credit	
  Na;onal	
  Physical	
  Laboratory	
  (UK)	
  

The	
  power	
  of	
  QC	
  is	
  captured	
  by	
  the	
  BQP	
  complexity	
  
class,	
  which	
  contains	
  P	
  but	
  only	
  overlaps	
  NP.	
  	
  

	
   BQP-­‐Complete	
  Problems	
  
•  Quantum	
  Simula?on	
  	
  
•  Order	
  Finding	
  
•  Approximate	
  Jones	
  Polynomial	
  
•  Hidden	
  Subgroups	
  
•  PoUs	
  Model	
  
•  Hamiltonian	
  Eigenvalues	
  Sampling	
  
•  Phase	
  Es?ma?on	
  Sampling	
  

Crossover	
  

Computa?onal	
  Cost	
  

Protein	
  Folding	
  

Quantum	
  Chemistry	
  Calcula/ons	
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FIG. 3. Finding the ground state of He-H+ for a specific
molecular separation, R = 90 pm. (a) Experimentally com-
puted energy hHi (colored dots) as a function of the opti-
mization step j. The color represents the tangle (degree of
entanglement) of the physical state, estimated directly from
the state parameters {�j

i}. The red lines indicate the en-
ergy levels of H(R). The optimization algorithm clearly con-
verges to the ground state of the molecule, which has small
but non zero tangle. The crosses show the energy calculated
at each experimental step, assuming an ideal quantum device.
(b) Overlap | h j | Gi | between the experimentally computed
state | ji at each the optimization step j and the theoretical
ground state of H, | Gi. Further details are provided in the
Appendix.

tion interaction Hamiltonian for this system has dimen-
sion 4, and can be written compactly as

H(R) =
X

i↵

hi

↵

(R)�i

↵

+
X

ij↵�

hij

↵�

(R)�i

↵

�j

�

(5)

The coe�cients hi

↵

(R) and hij

↵�

(R) were determined us-
ing the PSI3 computational package [3] and tabulated in
the Appendix.

In order to compute the bond dissociation of the
molecule, we use Algorithm 2 to compute its ground state
for a range of values of the nuclear separation R. In
Fig. 3 we report a representative optimization run for a
particular nuclear separation, demonstrating the conver-
gence of our algorithm to the ground state of H(R) in the
presence of experimental noise. Fig. 3(a) demonstrates
the convergence of the average energy, while Fig. 3(b)
demonstrates the convergence of the overlap | h j | Gi |
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FIG. 4. Bond dissociation curve of the He-H+ molecule. This
curve is obtained by repeated computation of the ground state
energy (as shown in Fig. 3) for several H(R). The magnified
plot shows that after correction for the measured systematic
error, the data overlap with the theoretical energy curve and
importantly we can resolve the molecular separation of min-
imal energy. Error bars show the standard deviation of the
computed energy.

of the current state | ji with the target state | Gi. The
color of each entry in Fig. 3(a) represents the tangle (ab-
solute concurrence squared) of the state at that step of
the algorithm. It is known that the volume of separable
states is doubly-exponentially small with respect to the
rest of state space [33]. Thus, the ability to traverse non-
separable state space increases the number of paths by
which the algorithm can converge and will be a require-
ment for future large-scale implementations. Moreover,
it is clear that the ability to produce entangled states is
a necessity for the accurate description of general quan-
tum systems where eigenstates may be non-separable, for
example the ground state of the He-H+ Hamiltonian has
small but not negligible tangle.

Repeating this procedure for several values of R, we
obtain the bond dissociation curve which is reported in
Fig. 4. This allows for the determination of the equilib-
rium bond length of the molecule, which was found to be
R=92.3±0.1 pm with a corresponding ground state elec-
tronic energy of E= -2.865±0.008 MJ/mol. This energy
has been corrected for experimental error using a method
fully described in the Appendix. The corresponding theo-
retical curve shows the numerically exact energy derived
from a full configuration interaction calculation of the

A	
  quantum	
  calcula?on	
  of	
  the	
  He+-­‐H	
  poten?al	
  surface	
  
carried	
  out	
  in	
  2013	
  had	
  chemical	
  accuracy.	
  The	
  hybrid	
  
algorithm	
  takes	
  the	
  results	
  of	
  a	
  quantum	
  chip	
  as	
  input	
  to	
  
a	
  classical	
  varia?onal	
  eigensolver	
  (Peruzzo	
  et	
  al.	
  2013).	
  
Follow	
  up	
  experiments	
  using	
  NV	
  diamond	
  were	
  able	
  to	
  
recover	
  excited	
  state	
  spectrum	
  (Wang	
  et	
  al.,	
  2014)	
  

Quantum	
  Ar/ficial	
  Intelligence	
  
In	
  2014,	
  USTC	
  used	
  a	
  four-­‐qubit	
  NMR	
  
computer	
  to	
  solve	
  an	
  OCR	
  task.	
  The	
  
computer	
  first	
  learned	
  the	
  symbols	
  
‘6’	
  and	
  ‘9’	
  and	
  then	
  classified	
  
variants	
  using	
  quantum	
  SVM	
  	
  
(Li	
  et	
  al.	
  2014).	
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FIG. 3. (a) Representation of the six-amino acid sequence, Proline-Serine-Valine-Lysine-

Methionine-Alanine with its respective one-letter sequence notation, PSVKMA. We use the pair-

wise nearest-neighbor Miyazawa-Jernigan interaction energies reported in Table 3 of Ref. 2. (b)

Divide and conquer approach showing three di↵erent schemes which independently solve the six-

amino acid sequence PSVKMA on a two-dimensional lattice. We solved the problem under Scheme2

and 3 (Experiments 1 through 4). (c) Energy landscape for the valid conformations of the PSVKMA

sequence. Results of the experimentally-measured probability outcomes are given as color-coded

percentages according to each of the experimental realizations described in panel (b). Percentages

for states with energy greater than zero are 32.70%, 59.88%, 8.00%, and 95.97% for Experiments

1 through 4, respectively.
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Low-­‐energy	
  configura?ons	
  of	
  a	
  six-­‐unit	
  protein	
  were	
  
found	
  using	
  the	
  Miyazawa-­‐Jernigan	
  poten?al	
  and	
  a	
  
quantum	
  op?miza?on	
  algorithm	
  in	
  2012.	
  Calcula?ons	
  
with	
  a	
  D-­‐Wave	
  Rainier	
  recovered	
  (Perdomo	
  et	
  al.	
  2012).	
  

Computa/onal	
  Chemistry	
  and	
  Biology	
  

Modeling	
  and	
  Simula/on	
  

Addi/onal	
  Applica/ons	
  
Network	
  Flows,	
  Quantum	
  Field	
  Theories,	
  Graph	
  
Theore?c	
  Analysis,	
  Par??on	
  Func?ons,	
  Reac?on	
  Rates,	
  
Curve	
  Fifng,	
  String	
  Rewri?ng,	
  Matrix	
  Powers,	
  Graph	
  
Collisions,	
  Riemann	
  Zeta	
  Func?ons,	
  Hidden	
  Legendre	
  
Symbols,	
  Pell’s	
  Equa?on,	
  and	
  many	
  many	
  more.	
  

QC	
  exponen?ally	
  speed-­‐ups	
  ab	
  ini?o	
  electronic	
  structure	
  
calcula?ons	
  and	
  supports	
  studies	
  of	
  molecular	
  reac?ons,	
  
biological	
  interac?ons,	
  and	
  heavy	
  atoms.	
  

Result	
  using	
  quantum	
  full	
  configura?on	
  interac?on	
  algorithm	
  (QFCI)	
  for	
  
compu?ng	
  electronic	
  structure	
  of	
  CH2	
  stretching	
  modes	
  (Veis,	
  2010).	
  

of Eq. !19" #this state can be qualitatively described by the
configuration !21"$.

We simulated the QFCI energy calculations for C–H
bond stretching !both C–H bonds were stretched, Fig. 5", and
H–C–H angle bending for ã 1A1 state !Fig. 6". These pro-
cesses were chosen designedly because description of bond
breaking is a hard task for many of computational methods
and H–C–H angle bending since the ã 1A1 state exhibits very
strong multireference character at linear geometries. The
equilibrium geometry of CH2 molecule was adopted from
Ref. 36 and corresponded to re=1.1089 Å and !e=101.89°".
Our work follows up the work by Wang et al.13 In this paper,
the authors studied the influence of initial guesses on the
performance of the QFCI method on two singlet states of
water molecule across the bond-dissociation regime. They
found out that the Hartree–Fock initial guess is not sufficient
for bond dissociation and suggested the use of multi-
configurational self-consistent field !MCSCF" method
!CASSCF in particular". Few configuration state functions
added to the initial guess improved the success probability
dramatically.

We also used and tested different initial guesses for

QFCI calculations. Those denoted as HF guess were com-
posed only from spin-adapted configurations which qualita-
tively describe certain state: in case of ã 1A1 configuration
!20", in case of c̃ 1A1 configuration !21", in case of X̃ 3B1 two
triplet-coupled configurations !19" !with weights 1/2", and
for b̃ 1B1 the same two configurations but singlet-coupled.
Initial guesses denoted as CAS!x ,y" guess were based on
complete active space configuration interaction !CASCI" cal-
culations with small complete active spaces !more details
about the definition of the active spaces will be given fur-
ther", which contained x electrons in y orbitals. Initial
guesses based on CASSCF calculations as in Ref. 13 could
be used in the same way. To be consistent, we employed the
FCI wave functions in a limited active space composed of
restricted Hartree–Fock !RHF" orbitals, which were also
used for the exponential of a Hamiltonian in the QFCI algo-
rithm. Initial guesses were constructed only from the con-
figurations whose absolute values of amplitudes were higher
than 0.1. Those constructed from the configurations whose
absolute values of amplitudes were higher than 0.2 are de-
noted as CAS!x ,y", tresh. 0.2 guess. All the initial guesses
were normalized before the simulations.

Similarly as in Ref. 12, the exponential of a Hamiltonian
operator was implemented as a n-qubit gate. Factorization to
the elementary one and two-qubit gates was performed only
to examine the gate count, but not in the numerical simula-
tions. We also did not take into account any decoherence and
thus assumed that the exponential of the Hamiltonian can be
obtained with an arbitrary precision by a proper number of
repetitions in Eq. !14". One and two-electron integrals in the
molecular orbital !MO" basis, parametrizing the Hamiltonian
!13", were obtained using the RHF orbitals. All ab initio
calculations !FCI, RHF" were employed with our suite of
quantum chemical programs.37

The phase in IPEA was always computed up to m=20
binary digits. Maximum and minimum expected energies
needed for the algorithm were set to Emax=−37.5 a.u. and
Emin=−39.0 a.u. All presented success probabilities corre-
spond to sum of the probabilities of rounding the phase up
and down !Ptot= Pup+ Pdown", therefore to probabilities of ob-
taining the final energy with precision %1.43"10−6 a.u. Fi-
nally, both of the aforementioned variants of IPEA !A and B"
were tested.

IV. RESULTS

A. C–H bond stretching

Results for the C–H bond stretching are summarized in
Figs. 7–9. Figure 7 presents the performance of the A ver-
sion of IPEA with maintaining the second part of the quan-
tum register during all iterations. Subfigures a–d represent
the simulations of the energy calculations of the four elec-
tronic states: !a" ã 1A1, !b" c̃ 1A1, !c" X̃ 3B1, and !d" b̃ 1B1.
Overlap between the initial HF guess wave function and the
exact FCI wave function as well as this overlap scaled by the
factor 0.81 #according to Eq. !9"$ are shown. Figure 7 also
presents the success probabilities of IPEA for the HF initial
guess and initial guesses based on the CASCI calculations

FIG. 5. Energies of the four simulated states of CH2 for the C–H bond
stretching. r0 denotes the equilibrium bond distance.

FIG. 6. Energy of ã 1A1 state of CH2 for the H–C–H angle bending, !
denotes the H–C–H angle.

194106-6 L. Veis and J. Pittner J. Chem. Phys. 133, 194106 !2010"
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Data	
  Mining	
  and	
  Machine	
  Learning	
  
QC	
  accelerates	
  search	
  and	
  op?miza?on,	
  which	
  are	
  the	
  
computa?onal	
  boUlenecks	
  for	
  many	
  applica?ons.	
  

Networks are used to model a wide range of phenomena in physics, computer science,
biochemistry, ethology, mathematics, sociology, economics, telecommunications, and many
other areas. This is because many systems can be seen as a network: proteins, computers,
communities, etc. Which other systems could you see as a network? Why?3. Artificial neural networks

One type of network sees the nodes as ‘artificial neurons’. These are called artificial
neural networks (ANNs). An artificial neuron is a computational model inspired in the
natural neurons. Natural neurons receive signals through synapses located on the dendrites
or membrane of the neuron. When the signals received are strong enough (surpass a certainthreshold), the neuron is activated and emits a signal though the axon. This signal might be
sent to another synapse, and might activate other neurons.

Figure 1. Natural neurons (artist’s conception).

The complexity of real neurons is highly abstracted when modelling artificial
neurons. These basically consist of inputs (like synapses), which are multiplied by weights
(strength of the respective signals), and then computed by a mathematical function which
determines the activation of the neuron. Another function (which may be the identity)
computes the output of the artificial neuron (sometimes in dependance of a certainthreshold). ANNs combine artificial neurons in order to process information.

Figure 2. An artificial neuron

QC	
  is	
  a	
  natural	
  venue	
  for	
  the	
  
simula?on	
  of	
  quantum	
  
system,	
  as	
  well	
  as	
  other	
  linear	
  
systems,	
  for	
  which	
  there	
  is	
  an	
  
exponen?al	
  speed	
  up	
  rela?ve	
  
to	
  classical	
  algorithms.	
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FIG. S1. (a) Representation of the six-amino-acid sequence, Proline-Serine-Valine-Lysine-

Methionine-Alanine with its respective one-letter sequence notation, PSVKMA. We use the pair-

wise nearest-neighbor Miyazawa-Jernigan interaction energies reported in Table 3 of Ref. 1. (b)

Divide and conquer approach showing three di↵erent schemes which independently solve the

six-amino-acid sequence PSVKMA on a two-dimensional lattice. We solved the problem under

Scheme2 and 3 (Experiments 1 through 4). (c) Energy landscape for the valid conformations of

the PSVKMA sequence. Results of the experimentally-measured probability outcomes are given

as color-coded percentages according to each of the experimental realizations described in panel

(b). Percentages for states with energy greater than zero are 32.70%, 59.88%, 8.00%, and 95.97%

for Experiments 1 through 4, respectively.
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i
∂ψ t( )
∂t

= H t( )ψ t( )

L d
2Q(t)
dt2

+ R dQ(t)
dt

+
Q(t)
C

= E(t)
∂φ r, t( )
∂t

= D∇2φ r, t( )

H t( ) = A t( )H I +B t( )HP

∇×H = J+ε ∂E
∂t
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