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Quantum-‐HPC	  hybrid	  	  systems	  
require	  programming	  principles	  
akin	  to	  current	  accelerator	  models.	  
But	  how	  will	  performance	  compare	  
to	  predic?ons?	  Performance	  
depends	  on	  programming	  models	  
as	  well	  as	  quantum	  technology.	  
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QCI	  serves	  as	  the	  interac?on	  point	  for	  CCSD	  resources	  in	  
quantum	  compu?ng.	  We	  have	  a	  broad	  emphasis	  on	  
theory,	  computa?on,	  and	  experiment	  for	  the	  research	  
and	  development	  of	  quantum	  compu?ng	  systems.	  	  
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Quantum	  Compu?ng	  (QC)	  leverages	  quantum	  physics	  to	  
solve	  problem	  more	  efficiently,	  quickly,	  and	  accurately.	  
It	  redefines	  feasibility	  for	  scien?fic	  discovery.	  

Advantages:	  Algorithmic	  Speedups	  

Challenges:	  Technological	  Precision	  and	  Scale	  
Individual	  atoms,	  electrons,	  and	  photons	  are	  the	  basis	  
for	  QC	  technology.	  System	  engineering	  requires	  precise	  
control	  and	  fabrica?on	  at	  the	  atomic	  level.	  

4-‐qubit	  superconduc;ng	  chip	  
Credit	  IBM	  (USA)	  

Monolithic	  3D	  trapped	  ion	  qubits	  
Credit	  Na;onal	  Physical	  Laboratory	  (UK)	  

The	  power	  of	  QC	  is	  captured	  by	  the	  BQP	  complexity	  
class,	  which	  contains	  P	  but	  only	  overlaps	  NP.	  	  

	   BQP-‐Complete	  Problems	  
•  Quantum	  Simula?on	  	  
•  Order	  Finding	  
•  Approximate	  Jones	  Polynomial	  
•  Hidden	  Subgroups	  
•  PoUs	  Model	  
•  Hamiltonian	  Eigenvalues	  Sampling	  
•  Phase	  Es?ma?on	  Sampling	  

Crossover	  

Computa?onal	  Cost	  

Protein	  Folding	  

Quantum	  Chemistry	  Calcula/ons	  
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FIG. 3. Finding the ground state of He-H+ for a specific
molecular separation, R = 90 pm. (a) Experimentally com-
puted energy hHi (colored dots) as a function of the opti-
mization step j. The color represents the tangle (degree of
entanglement) of the physical state, estimated directly from
the state parameters {�j

i}. The red lines indicate the en-
ergy levels of H(R). The optimization algorithm clearly con-
verges to the ground state of the molecule, which has small
but non zero tangle. The crosses show the energy calculated
at each experimental step, assuming an ideal quantum device.
(b) Overlap | h j | Gi | between the experimentally computed
state | ji at each the optimization step j and the theoretical
ground state of H, | Gi. Further details are provided in the
Appendix.

tion interaction Hamiltonian for this system has dimen-
sion 4, and can be written compactly as

H(R) =
X
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The coe�cients hi

↵

(R) and hij

↵�

(R) were determined us-
ing the PSI3 computational package [3] and tabulated in
the Appendix.

In order to compute the bond dissociation of the
molecule, we use Algorithm 2 to compute its ground state
for a range of values of the nuclear separation R. In
Fig. 3 we report a representative optimization run for a
particular nuclear separation, demonstrating the conver-
gence of our algorithm to the ground state of H(R) in the
presence of experimental noise. Fig. 3(a) demonstrates
the convergence of the average energy, while Fig. 3(b)
demonstrates the convergence of the overlap | h j | Gi |
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FIG. 4. Bond dissociation curve of the He-H+ molecule. This
curve is obtained by repeated computation of the ground state
energy (as shown in Fig. 3) for several H(R). The magnified
plot shows that after correction for the measured systematic
error, the data overlap with the theoretical energy curve and
importantly we can resolve the molecular separation of min-
imal energy. Error bars show the standard deviation of the
computed energy.

of the current state | ji with the target state | Gi. The
color of each entry in Fig. 3(a) represents the tangle (ab-
solute concurrence squared) of the state at that step of
the algorithm. It is known that the volume of separable
states is doubly-exponentially small with respect to the
rest of state space [33]. Thus, the ability to traverse non-
separable state space increases the number of paths by
which the algorithm can converge and will be a require-
ment for future large-scale implementations. Moreover,
it is clear that the ability to produce entangled states is
a necessity for the accurate description of general quan-
tum systems where eigenstates may be non-separable, for
example the ground state of the He-H+ Hamiltonian has
small but not negligible tangle.

Repeating this procedure for several values of R, we
obtain the bond dissociation curve which is reported in
Fig. 4. This allows for the determination of the equilib-
rium bond length of the molecule, which was found to be
R=92.3±0.1 pm with a corresponding ground state elec-
tronic energy of E= -2.865±0.008 MJ/mol. This energy
has been corrected for experimental error using a method
fully described in the Appendix. The corresponding theo-
retical curve shows the numerically exact energy derived
from a full configuration interaction calculation of the

A	  quantum	  calcula?on	  of	  the	  He+-‐H	  poten?al	  surface	  
carried	  out	  in	  2013	  had	  chemical	  accuracy.	  The	  hybrid	  
algorithm	  takes	  the	  results	  of	  a	  quantum	  chip	  as	  input	  to	  
a	  classical	  varia?onal	  eigensolver	  (Peruzzo	  et	  al.	  2013).	  
Follow	  up	  experiments	  using	  NV	  diamond	  were	  able	  to	  
recover	  excited	  state	  spectrum	  (Wang	  et	  al.,	  2014)	  

Quantum	  Ar/ficial	  Intelligence	  
In	  2014,	  USTC	  used	  a	  four-‐qubit	  NMR	  
computer	  to	  solve	  an	  OCR	  task.	  The	  
computer	  first	  learned	  the	  symbols	  
‘6’	  and	  ‘9’	  and	  then	  classified	  
variants	  using	  quantum	  SVM	  	  
(Li	  et	  al.	  2014).	  
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FIG. 3. (a) Representation of the six-amino acid sequence, Proline-Serine-Valine-Lysine-

Methionine-Alanine with its respective one-letter sequence notation, PSVKMA. We use the pair-

wise nearest-neighbor Miyazawa-Jernigan interaction energies reported in Table 3 of Ref. 2. (b)

Divide and conquer approach showing three di↵erent schemes which independently solve the six-

amino acid sequence PSVKMA on a two-dimensional lattice. We solved the problem under Scheme2

and 3 (Experiments 1 through 4). (c) Energy landscape for the valid conformations of the PSVKMA

sequence. Results of the experimentally-measured probability outcomes are given as color-coded

percentages according to each of the experimental realizations described in panel (b). Percentages

for states with energy greater than zero are 32.70%, 59.88%, 8.00%, and 95.97% for Experiments

1 through 4, respectively.
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Low-‐energy	  configura?ons	  of	  a	  six-‐unit	  protein	  were	  
found	  using	  the	  Miyazawa-‐Jernigan	  poten?al	  and	  a	  
quantum	  op?miza?on	  algorithm	  in	  2012.	  Calcula?ons	  
with	  a	  D-‐Wave	  Rainier	  recovered	  (Perdomo	  et	  al.	  2012).	  

Computa/onal	  Chemistry	  and	  Biology	  

Modeling	  and	  Simula/on	  

Addi/onal	  Applica/ons	  
Network	  Flows,	  Quantum	  Field	  Theories,	  Graph	  
Theore?c	  Analysis,	  Par??on	  Func?ons,	  Reac?on	  Rates,	  
Curve	  Fifng,	  String	  Rewri?ng,	  Matrix	  Powers,	  Graph	  
Collisions,	  Riemann	  Zeta	  Func?ons,	  Hidden	  Legendre	  
Symbols,	  Pell’s	  Equa?on,	  and	  many	  many	  more.	  

QC	  exponen?ally	  speed-‐ups	  ab	  ini?o	  electronic	  structure	  
calcula?ons	  and	  supports	  studies	  of	  molecular	  reac?ons,	  
biological	  interac?ons,	  and	  heavy	  atoms.	  

Result	  using	  quantum	  full	  configura?on	  interac?on	  algorithm	  (QFCI)	  for	  
compu?ng	  electronic	  structure	  of	  CH2	  stretching	  modes	  (Veis,	  2010).	  

of Eq. !19" #this state can be qualitatively described by the
configuration !21"$.

We simulated the QFCI energy calculations for C–H
bond stretching !both C–H bonds were stretched, Fig. 5", and
H–C–H angle bending for ã 1A1 state !Fig. 6". These pro-
cesses were chosen designedly because description of bond
breaking is a hard task for many of computational methods
and H–C–H angle bending since the ã 1A1 state exhibits very
strong multireference character at linear geometries. The
equilibrium geometry of CH2 molecule was adopted from
Ref. 36 and corresponded to re=1.1089 Å and !e=101.89°".
Our work follows up the work by Wang et al.13 In this paper,
the authors studied the influence of initial guesses on the
performance of the QFCI method on two singlet states of
water molecule across the bond-dissociation regime. They
found out that the Hartree–Fock initial guess is not sufficient
for bond dissociation and suggested the use of multi-
configurational self-consistent field !MCSCF" method
!CASSCF in particular". Few configuration state functions
added to the initial guess improved the success probability
dramatically.

We also used and tested different initial guesses for

QFCI calculations. Those denoted as HF guess were com-
posed only from spin-adapted configurations which qualita-
tively describe certain state: in case of ã 1A1 configuration
!20", in case of c̃ 1A1 configuration !21", in case of X̃ 3B1 two
triplet-coupled configurations !19" !with weights 1/2", and
for b̃ 1B1 the same two configurations but singlet-coupled.
Initial guesses denoted as CAS!x ,y" guess were based on
complete active space configuration interaction !CASCI" cal-
culations with small complete active spaces !more details
about the definition of the active spaces will be given fur-
ther", which contained x electrons in y orbitals. Initial
guesses based on CASSCF calculations as in Ref. 13 could
be used in the same way. To be consistent, we employed the
FCI wave functions in a limited active space composed of
restricted Hartree–Fock !RHF" orbitals, which were also
used for the exponential of a Hamiltonian in the QFCI algo-
rithm. Initial guesses were constructed only from the con-
figurations whose absolute values of amplitudes were higher
than 0.1. Those constructed from the configurations whose
absolute values of amplitudes were higher than 0.2 are de-
noted as CAS!x ,y", tresh. 0.2 guess. All the initial guesses
were normalized before the simulations.

Similarly as in Ref. 12, the exponential of a Hamiltonian
operator was implemented as a n-qubit gate. Factorization to
the elementary one and two-qubit gates was performed only
to examine the gate count, but not in the numerical simula-
tions. We also did not take into account any decoherence and
thus assumed that the exponential of the Hamiltonian can be
obtained with an arbitrary precision by a proper number of
repetitions in Eq. !14". One and two-electron integrals in the
molecular orbital !MO" basis, parametrizing the Hamiltonian
!13", were obtained using the RHF orbitals. All ab initio
calculations !FCI, RHF" were employed with our suite of
quantum chemical programs.37

The phase in IPEA was always computed up to m=20
binary digits. Maximum and minimum expected energies
needed for the algorithm were set to Emax=−37.5 a.u. and
Emin=−39.0 a.u. All presented success probabilities corre-
spond to sum of the probabilities of rounding the phase up
and down !Ptot= Pup+ Pdown", therefore to probabilities of ob-
taining the final energy with precision %1.43"10−6 a.u. Fi-
nally, both of the aforementioned variants of IPEA !A and B"
were tested.

IV. RESULTS

A. C–H bond stretching

Results for the C–H bond stretching are summarized in
Figs. 7–9. Figure 7 presents the performance of the A ver-
sion of IPEA with maintaining the second part of the quan-
tum register during all iterations. Subfigures a–d represent
the simulations of the energy calculations of the four elec-
tronic states: !a" ã 1A1, !b" c̃ 1A1, !c" X̃ 3B1, and !d" b̃ 1B1.
Overlap between the initial HF guess wave function and the
exact FCI wave function as well as this overlap scaled by the
factor 0.81 #according to Eq. !9"$ are shown. Figure 7 also
presents the success probabilities of IPEA for the HF initial
guess and initial guesses based on the CASCI calculations

FIG. 5. Energies of the four simulated states of CH2 for the C–H bond
stretching. r0 denotes the equilibrium bond distance.

FIG. 6. Energy of ã 1A1 state of CH2 for the H–C–H angle bending, !
denotes the H–C–H angle.

194106-6 L. Veis and J. Pittner J. Chem. Phys. 133, 194106 !2010"
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Data	  Mining	  and	  Machine	  Learning	  
QC	  accelerates	  search	  and	  op?miza?on,	  which	  are	  the	  
computa?onal	  boUlenecks	  for	  many	  applica?ons.	  

Networks are used to model a wide range of phenomena in physics, computer science,
biochemistry, ethology, mathematics, sociology, economics, telecommunications, and many
other areas. This is because many systems can be seen as a network: proteins, computers,
communities, etc. Which other systems could you see as a network? Why?3. Artificial neural networks

One type of network sees the nodes as ‘artificial neurons’. These are called artificial
neural networks (ANNs). An artificial neuron is a computational model inspired in the
natural neurons. Natural neurons receive signals through synapses located on the dendrites
or membrane of the neuron. When the signals received are strong enough (surpass a certainthreshold), the neuron is activated and emits a signal though the axon. This signal might be
sent to another synapse, and might activate other neurons.

Figure 1. Natural neurons (artist’s conception).

The complexity of real neurons is highly abstracted when modelling artificial
neurons. These basically consist of inputs (like synapses), which are multiplied by weights
(strength of the respective signals), and then computed by a mathematical function which
determines the activation of the neuron. Another function (which may be the identity)
computes the output of the artificial neuron (sometimes in dependance of a certainthreshold). ANNs combine artificial neurons in order to process information.

Figure 2. An artificial neuron

QC	  is	  a	  natural	  venue	  for	  the	  
simula?on	  of	  quantum	  
system,	  as	  well	  as	  other	  linear	  
systems,	  for	  which	  there	  is	  an	  
exponen?al	  speed	  up	  rela?ve	  
to	  classical	  algorithms.	  
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FIG. S1. (a) Representation of the six-amino-acid sequence, Proline-Serine-Valine-Lysine-

Methionine-Alanine with its respective one-letter sequence notation, PSVKMA. We use the pair-

wise nearest-neighbor Miyazawa-Jernigan interaction energies reported in Table 3 of Ref. 1. (b)

Divide and conquer approach showing three di↵erent schemes which independently solve the

six-amino-acid sequence PSVKMA on a two-dimensional lattice. We solved the problem under

Scheme2 and 3 (Experiments 1 through 4). (c) Energy landscape for the valid conformations of

the PSVKMA sequence. Results of the experimentally-measured probability outcomes are given

as color-coded percentages according to each of the experimental realizations described in panel

(b). Percentages for states with energy greater than zero are 32.70%, 59.88%, 8.00%, and 95.97%

for Experiments 1 through 4, respectively.
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L d
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H t( ) = A t( )H I +B t( )HP

∇×H = J+ε ∂E
∂t

Quality	   Absolute	   Rela?ve	   Quantum	  

Performance	   Time	  to	  
solu;on	  

FLOPS	   QOP	  per	  sec	  

Efficiency	   Power	   FLOP	  /	  WaS	   QOP	  /	  WaS	  

Cost	   Budget	   FLOP	  /	  Dollar	   Qubit	  /	  Dollar	  

Scaling	   Size/Time	   T1/(N*TN)	   Control	  boSleneck	  

Portability	   Adop;on	   Lines	  of	  code	   Lines	  of	  code	  

Node	  

QPU	  QPU	  

Node	   Node	  

QPU	  

Interconnect	  

Quantum	  Interconnect	  


