
User-friendly interface
To provide various interfaces, including one using C++11.
Top level design to provide features of the mshadow library
(https://github.com/dmlc/mshadow)

Code Generation
C++11 features will be used as much as possible. Additional needs will be handled through defining a
domain specific language (DSL). DSL will handle generation of versions (index reordering, next) to be
empirically evaluated and be part of the autotuning framework.

Index reordering/reshape
If we store tensors as column-wise 1D arrays, , i.e.,
it can be interpreted as a 4th order tensor, a nd x nd matrix, or a vector of size nd2, without changing the
storage. We can define ne as long as n1...nr = m1…mq and for every i1..r , j1..q
 i1 + n1i2 + … + n1n2...nr-1ir = j1 + m1j2 + … + m1m2…mq-1jq.
Contractions can be implemented as a sequence of pairwise contractions. There is enough complexity
here to search for something better: code generation, index reordering, and autotuning will be used, e.g.,
contractions (3a) - (4f) can be implemented as tensor index-reordering plus gemm A, B -> ATB.

Batched LA
Tensor contractions are transformed through reshapes to batched LA operations, many of which available
in MAGMA[2] http://icl.cs.utk.edu/magma/ (including LU, QR, Cholesky, GEMM, GEMV, TRSM, SYRK).

Autotuning
We are developing fixed-size gemm kernels for GPUs,
Xeon Phi, and multicore (see Figure on Right for a single
core Intel Core i7) through an autotuning framework.
A number of generic versions are developed and
parametrized for performance. The parameters
are autotuned (empirically) to find “best” kernels
for specific size.

Conclusions and Future directions
● High-performance package on Tensor Algebra has the potential for high-impact on a number of

important applications
● Multidisciplinary effort
● Current results show promising performance, where various components will be leveraged from

autotuning MAGMA Batched linear algebra kernels, and BLAST from LLNL
● This is an ongoing work

[1] V. Dobrev, T.Kolev, R.Rieben. High order curvilinear finite element methods for Lagrangian hydrodynamics. SIAM J.Sci.Comp.34(5), B606–B641. (36 pages)
[2] A.Haidar, T.Dong, S.Tomov, P.Luszczek, and J.Dongarra. A framework for batched and GPU-resident factorization algorithms applied to block
 Householder transformations. ISC High Performance 2015, Frankfurt, Germany, July 12-16, 2015.

Towards a High-Performance Tensor Algebra Package for AcceleratorsSMC15 Poster
Gatlinburg, Tennessee, Aug 31- Sept 2, 2015
http://computing.ornl.gov/workshops/SMC15/ M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, T. Kolev, I. Masliah, and S. Tomov

Abstract: Numerous important applications, e.g., high-order FEM simulations, can be
expressed through tensors. Examples are computation of FE matrices and SpMV products
expressed as generalized tensor contractions. Contractions by the first index can often be
represented as tensor index reordering plus gemm, which is a key factor to achieve high-
performance. We present ongoing work on the design of a high-performance package in
MAGMA for Tensor algebra that includes techniques to organize tensor contractions, data
storage, and parametrization related to batched execution of large number of small tensor
contractions. We apply auto-tuning and code generation techniques to provide an
architecture-aware, user-friendly interface.

Motivation
Numerous important applications:

■ High-order FEM simulations
■ Signal Processing
■ Numerical Linear Algebra
■ Numerical Analysis
■ Data Mining
■ Deep Learning
■ Graph Analysis
■ Neuroscience

and more
can be expressed through tensors.

Example cases
Numerical linear algebra:

■ A 4-dimensional tensor
contraction

■ rank-k update on matrices in
tiles format (k can be small,
e.g., sub-vector/warp size)

■ Must determine (in software)
if possible to do it through
batched GEMM kernels

The goal is to design a:
■ High-performance package for

Tensor algebra
■ Built-in architecture-awareness

(GPU, Xeon Phi, multicore)
■ User-friendly interface

Tensor operations in high-order FEM
Consider the FE mass matrix ME for an element/zone E with weight ρ, as a 2-dimensional tensor:

 i, j = 1,..., nd , where

Take the nq x nd matrix and Then,

 , or omitting the E subscript .

Using FE of order p, we have nd = O(pd) and nq = O(pd), so B is dense O(pd) x O(pd) matrix.

If the FE basis and the quadrature rule have tensor product structure, we can decompose dofs and
quadrature point indices logical coordinate axes
 i = (i1, …, id), j = (j1, …, jd), k = (k1, …, kd)
so Mij can be viewed as 2d-dimensional tensor Mi1, …, id, j1, …, jd.

Summary of kernels needed:
■ Aassembly of M, referred as equations (1) & (2) below
■ Evaluations of M times V, referred as equations (3) & (4) below

Approach:
● User-friendly interface

 Designed in C++11

● Code generation
 Using C++11 features and
 domain specific language (DSL)

● Index reordering/reshape
 To organize tensor contractions
 as index reordering/reshape
 plus a gemm

● Batched LA
 Reorganize tensor contraction
 by reshape plus common
 batched linear algebra,
 leveraging the MAGMA Batched
 library

● Autotuning
For tuning specific-size and
spacific architecture kernels;
To work also with code
generation in automaticly
tuning various index reorderings

 From mshadow tutorial (https://github.com/dmlc/mshadow/tree/master/guide):
 // assume we have a float space
 float data[20];
 // create a 2 x 5 x 2 tensor, from existing space
 Tensor<cpu, 3> ts(data, Shape3(2,5,2));
 // take first subscript of the tensor
 Tensor<cpu, 2> mat = ts[0];
 // Tensor object is only a handle, assignment means they have same data content
 // we can specify content type of a Tensor, if not specified, it is float by default
 Tensor<cpu, 2, float> mat2 = mat;

Figure:
Batched dgemms on K40 GPU.
Batch count is 2,000.

MAGMA exceeds in performance
CUBLAS for “small” sizes, currently
tuned for above 32. Current work is
concentrated on kernels for fixed
smaller (sub-warp) sizes.

https://github.com/dmlc/mshadow
http://icl.cs.utk.edu/magma/
https://github.com/dmlc/mshadow/tree/master/guide

