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Abstract: Numerous important applications, e.g., high-order FEM simulations, can be

expressed through tensors. Examples are computation of FE matrices and SpMV products
expressed as generalized tensor contractions. Contractions by the first index can often be
represented as tensor index reordering plus gemm, which is a key factor to achieve high-
performance. We present ongoing work on the design of a high-performance package in
MAGMA for Tensor algebra that includes techniques to organize tensor contractions, data
storage, and parametrization related to batched execution of large number of small tensor
contractions. We apply auto-tuning and code generation techniques to provide an
architecture-aware, user-friendly interface.

Motivation

Numerous important applications: The goal is to design a:
m High-order FEM simulations m High-performance package for
m Signal Processing Tensor algebra
m Numerical Linear Algebra m Built-in architecture-awareness
m Numerical Analysis (GPU, Xeon Phi, multicore)
m Data Mining m User-friendly interface

m Deep Learning
m Graph Analysis
m Neuroscience
and more
can be expressed through tensors.

Example cases

Numerical linear algebra:

m A 4-dimensional tensor
contraction

m rank-k update on matrices In
tiles format (k can be small,
e.g., sub-vector/warp size)

m Must determine (in software)
If possible to do it through
batched GEMM kernels

Lagrangian Hydrodynamics in the BLAST code!!

On semi-discrete level our method can be written as

d
Momentum Conservation: d_‘tf = -M_'F-1
: de 1T
Energy Conservation: prie M_"F*-v
d
Equation of Motion: d_>t( =V

where v, e, and x are the unknown velocity, specific internal energy, and grid
position, respectively; M, and M, are independent of time velocity and en-
ergy mass matrices; and F is the generalized corner force matrix depending on
(v, e,x) that needs to be evaluated at every time step.

Tensor operations in high-order FEM
Consider the FE mass matrix Me for an element/zone E with weight p, as a 2-dimensional tensor:

e nd is the number of FE degrees of freedom (dofs)
(Mp)i; Z o, p(ax) #iqk) vj(ak) | Tear)l nq is the number of quadrature points

k=1 e {p;} are the FE basis functions on the reference element
L,j=1,..., nd , where e |Jp|is the determinant of the element transformation
o {qr},., and {ay}, ., are the points and weights of the quadrature rule

Take the ng x nd matrix By; = ©;(qi), (Dg)ir = ax p(ar) | Je(qr)|- Then,
(MEg)ii =D .2 Bei(Dg)ikBkj. . or omitting the E subscript M = B*DB.
Using FE of order p, we have nd = O(p?) and nq = O(pY), so B is dense O(p?) x O(p°) matrix.

If the FE basis and the quadrature rule have tensor product structure, we can decompose dofs and
guadrature point indices logical coordinate axes
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SO Mij can be viewed as 2d-dimensional tensor I\/Ii1 a1 id

Summary of kernels needed:

m Aassembly of M, referred as equations (1) & (2) below
m Evaluations of M times V, referred as equations (3) & (4) below
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U Se r'fri e n d Iy i nte I'face From mshadow tutorial ( https://github.com/dmic/mshadow/tree/master/quide ):
To provide various interfaces, including one using C++11. foat data[20];

Tensor<cpu, 3> ts(data, Shape3(2,5,2));

Top level design to provide features of the mshadow library
( https://github.com/dmic/mshadow )

Tensor<cpu, 2> mat = ts[0];

Tensor<cpu, 2, float> mat2 = mat;

Code Generation

C++11 features will be used as much as possible. Additional needs will be handled through defining a
domain specific language (DSL). DSL will handle generation of versions (index reordering, next) to be
empirically evaluated and be part of the autotuning framework.

Index reordering/reshape
. n n n n n n n 2 n 2

If we store tensors as column-wise 1D arrays, M50 = MPMM = MG = MRS i indysndisa) 5 1€,
It can be Interpreted as a 4th order tensor, a nd x nd matrix, or a vector of size nd?, without changing the
storage. We can define Reshape(T)ZjXqumq L. "aslongasn..n =m,..m andforeveryi ,j,

L+n1,+ ... nnn'—/+m1j ..+mm mJ

r-1r 1 2 q

Contractions can be |mplemented as a sequence of pairwise Contractlons 'Ighere IS enough complexity
here to search for something better: code generation, index reordering, and autotuning will be used, e.qg.,

contractions (3a) - (4f) can be implemented as tensor index-reordering plus gemm A, B -> A'B.

Batched LA

Tensor contractions are transformed through reshapes to batched LA operations, many of which available
in MAGMA!4! http://icl.cs.utk.edu/magmal/ (including LU, QR, Cholesky, GEMM, GEMV, TRSM, SYRK).
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Autotuning .
We are developing fixed-size gemm kernels for GPUs, 5| [T0dgemm 5%5 batched
7.1
0.65 0.75 |

Xeon Phi, and multicore (see Figure on Right for a single
core Intel Core i7) through an autotuning framework.

A number of generic versions are developed and
parametrized for performance. The parameters

are autotuned (empirically) to find “best” kernels T '
for specific size. 0 I B I

base dynamic  static mkl openblas cublas  Magma

Conclusions and Future directions ode verson
e High-performance package on Tensor Algebra has the potential for high-impact on a number of
Important applications
e Multidisciplinary effort
e Current results show promising performance, where various components will be leveraged from
autotuning MAGMA Batched linear algebra kernels, and BLAST from LLNL
e [his Is an ongoing work
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