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Monte Carlo methods as a means of scalability

Monte Carlo (MC) methods are a general class of computer
algorithms that simulate a probability distribution for a system. A
“random walker” generates a Markov chain of states in a phase space
by performing a “random walk” stochastically with the use of pseudo
random number sequences.
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In practice, a random walker is mapped to a computational thread.
This enables Monte Carlo methods to provide a natural way of
massive parallelism by increasing the number of random walkers
working concurrently. This applies to the two distinct main branches
of Monte Carlo approaches: (i) classical MC for the study of finite
temperature properties through statistical mechanics; and (ii)
guantum Monte Carlo (QMC) as an ab initio method for the study of
electronic properties by solving the Schrédinger equation.

In the following, | demonstrate the feasibility of achieving improved
strong and weak scaling by new algorithm designs and renovations,
with an example in classical MC. | also discuss a few scalability
challenges that | envision in future high performance computers.

Replica-exchange Wang-Landau sampling

Wang-Landau(WL) sampling!!l is a classical Monte Carlo method that
simulates the density of states, g(E), where E is the total energy of a
system. The partition function is given by:
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from which thermodynamic properties can be calculated. WL
sampling was originally designed as a serial algorithm:
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1. Initialize: H(E) =0, g(E)=1, f,= ¢

2. Generate a trial configuration, accept with probability:
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3. Update g(E) — g(E) * f, H(E) — H(E) + 1

4. Repeat steps 2-3 until the histogram is “flat”; reset F(E) = 0, | f
5. Repeat steps 2-4 until /'~ /

-> Final density of states, g(E)

To achieve greater fidelity of the Monte Carlo results and to enable
the sampling of larger phase spaces, a more efficient and highly
scalable parallel scheme, replica-exchange Wang-Landau (REWL)[2!
sampling, is recently developed:
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. Splitting of entire energy range into smaller, overlapping windows

. Ordinary Wang-Landau procedure within a window

. Each walker updates its own density of states and histogram

4. Replica-exchange between neighboring windows at intervals to ensure ergodicity

REWL has demonstrated excellent strong and weak scaling. Super-
linear speed-up is observed compared to serial, single walker WL
sampling:
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Combining with a density functional theory method (Locally self-
consistent multiple scattering (LSMS)B1), WL-LSMSI4 successfully
scaled to entire Titan and has resulted in scientific breakthroughs in
the understanding of magnetic materials properties like Fe and Fe,C.
REWL-LSMS has been implemented to speed up the exploration of
phase space and improve the scalability of this method. It is currently
applied to study Ni and CuZn.

Software architecture of REWL-LSMS on Titan

REWL communications across head nodes

Head node keeps track
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Future directions and challenges

* New algorithms to exploit multi-level parallelism

(on-going work on QMC, under OLCF’s CAAR effort)

* Performance portability across architectures

will need efficient management of hierarchical memory and thread
or task scheduling abstracted at the programming language,
compiler or standard library level
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