
Improving Performance of the FLASH code on Summit
and Other Architectures: First Steps

FLASH is a publically-available, multi-physics, parallel simulation code that is widely used in the astrophysics community. Although it is a
well-established code, FLASH was not designed to exploit the accelerated technologies (e.g. GPUs, MICs) that have become common place
on modern HPC architectures. Under the aegis of a CAAR (Center for Accelerated Application Readiness) project, we will restructure the
most computationally-intensive physics modules in FLASH in order to expose the vector-like parallelism associated with such technologies.

Thomas L. Papatheodore1,3 & O. E. Bronson Messer1,2,3

1. University of Tennessee, 2. Oak Ridge National Laboratory, 3. Oak Ridge Leadership Computing Facility

The next step is to develop an OpenACC version of the burning module in order to exploit the GPUs on Titan and the upcoming Summit
supercomputer. This will require block-level threading as well as restructuring the burning routines to send an entire block of zones (e.g.
16✕16 zones in 2D) to the GPUs. This increased parallelism is expected further improve run time and allow the evolution of even larger
networks.

do loop over local blocks
 do loop over zones in z-dim
 do loop over zones in y-dim
 do loop over zones in x-dim

 PERFORM BURN ON 1 ZONE

 end do
 end do
 end do
end do

8

6

4

2

0

-2

-4

-6

-8

1 2 3 4 5 6 7

Z
(×

10
9

cm
)

X (×109 cm)

1.0×100

6.7×10-1

3.3×10-1

1.0×10-10

56Ni

5.0×107

1.4×104

3.7×100

1.0×10-3

Density (g cm-3)

1.0×100

6.7×10-1

3.3×10-1

1.0×10-10

44Ti

13-species 150-species8

6

4

2

0

-2

-4

-6

-8

1 2 3 4 5 6 7

Z
(×

10
9

cm
)

X (×109 cm)

Figure 2 (right): Need for Evolving Large Reaction Networks
Comparison of two (2D) Type Ia supernova simulations ignited via He-belt
detonations. The simulation evolved with a 150-species network produced less
44Ti and 56Ni (observables) than the one evolved with a commonly-used 13-
species network.

The current version of FLASH already includes OpenMP threading in many of the physics modules (in addition to MPI grid decomposition).
One notable exception to this is the nuclear burning module. Therefore, we will begin our development efforts by adding OpenMP threading
to the nuclear burning module (Figure 1).

•  As a “typical problem” for optimization work, we will simulate the detonation of a white dwarf star (i.e. Type Ia supernova).
•  Using large nuclear reaction networks in such simulations results in higher physical fidelity (Figure 2) but is computationally expensive.

The computational cost of solving nuclear reaction networks scales as the number of species squared, so increasing from 13 species
(commonly-used “reduced” network) to 150 species (necessary for physical fidelity) increases the time spent in the burning module by at
least ~130✕. Because evolving such networks can dominate run time (>90%) in typical astrophysical problems, the overall run time can
increase by roughly the same amount.

•  OpenMP threading can help reduce this run time by computing burning in multiple zones of a given block in parallel (Figure 3).
•  Load imbalance might limit the degree to which parallelism can improve results (Figure 4).

Figure 3 (left): Preliminary Results of OpenMP threading in Burn Module Using 150 Species
Plot of run time (red) versus # of threads, showing an order of magnitude improvement when using as many as 16 threads. The blue triangles show the
maximum time that any MPI rank spent in the burning routines, illustrating how the rank with the longest “burn time” sets the overall burn time (and for large
networks, the overall run time).

FLASH User’s Guide
Version 2.5

February 2005

ASC FLASH Center
University of Chicago

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

Figure 1 (left): FLASH Workflow: Burn Loop
The grid is decomposed into AMR blocks that are divided among MPI ranks.
During a time step, each MPI rank loops over all the zones of its local blocks,
performing burning on each zone.

Figure 4 (right): Load Imbalance with Large Network
The data points show the total time spent in the burning routines
for each of the 64 MPI ranks used. Using the 13-species
network, the “burn time” increases as the number of calls to the
burner increases. However, when using the 150-species
network, some MPI ranks have pathological burn times that are
most likely due to longer convergence times in a small subset of
zones.

start	

Write	 	
Output	

No	

Yes	

Burn	

Hydro	

Con5nue?	

Stop	

Determine	 and	 take	
5me	 step	

Gravity	

