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Fig. 4.5: Error in the reduce order model compared to the prediction standard de-
viation for one realization of the bubble locations at the final time for two values of
the bubble radius, s = 0.39 and s = 1.95 cm. (Colors are visible in the electronic
version.)

the varying conductivity fields took approximately twenty minutes to construct using
Cubit after substantial optimizations.

Working with the simulation data involved a few pre- and post-processing steps:
interpret 4TB of Exodus II files from Aria, globally transpose the data, compute the
TSSVD, and compute predictions and errors. The preprocessing steps took approx-
imately 8-15 hours. We collected precise timing information, but we do not report
it as these times are from a multi-tenant, unoptimized Hadoop cluster where other
jobs with sizes ranging between 100GB and 2TB of data sometimes ran concurrently.
Also, during our computations, we observed failures in hard disk drives and issues
causing entire nodes to fail. Given that the cluster has 40 cores, there was at most
2400 cpu-hours consumed via these calculations—compared to the 131,072 hours it
took to compute 4096 heat transfer simulations on Red Sky. Thus, evaluating the
ROM was about 50-times faster than computing a full simulation.

We used 20,000 reducers to convert the Exodus II simulation data. This choice
determined how many map tasks each subsequent step utilized—around 33,000. We
also found it advantageous to store matrices in blocks of about 16MB per record. The
reduction in the data enabled us to use a laptop to compute the coe�cients of the
ROM and apply to the far face for the UQ study in Section 4.4.

Here are a few pertinent challenges we encountered while performing this study.
Generating 8192 meshes with di↵erent material properties and running independent

Tensor eigenvalues"
and a power method
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Tensor methods for network alignment

Network alignment is the problem of computing an approximate isomorphism between two net-
works. In collaboration with Mohsen Bayati, Amin Saberi, Ying Wang, and Margot Gerritsen,
the PI has developed a state of the art belief propagation method (Bayati et al., 2009).

FIGURE 6 – Previous work
from the PI tackled net-
work alignment with ma-
trix methods for edge
overlap:
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If xi, xj , and xk are
indicators associated with
the edges (i, i0), (j, j0), and
(k, k0), then we want to
include the product xixjxk

in the objective, yielding a
tensor problem.

We propose to study tensor methods to perform network alignment
with triangle and other higher-order graph moment matching. Similar
ideas were proposed by Šváb (2007); Chertok and Keller (2010) also
proposed using triangles to aid in network alignment problems.
In Bayati et al. (2011), we found that triangles were a key missing
component in a network alignment problem with a known solution.
Given that preserving a triangle requires three edges between two
graphs, this yields a tensor problem:

maximize
X

i2L

wixi +
X

i2L

X

j2L

xixjSi,j +
X

i2L

X

j2L

X

k2L

xixjxkTi,j,k

| {z }
triangle overlap term

subject to x is a matching.

Here, Ti,j,k = 1 when the edges corresponding to i, j, and k in
L results in a triangle in the induced matching. Maximizing this
objective is an intractable problem. We plan to investigate a heuris-
tic based on a rank-1 approximation of the tensor T and using
a maximum-weight matching based rounding. Similar heuristics
have been useful in other matrix-based network alignment algo-
rithms (Singh et al., 2007; Bayati et al., 2009). The work involves
enhancing the Symmetric-Shifted-Higher-Order Power Method due to
Kolda and Mayo (2011) to incredibly large and sparse tensors . On this
aspect, we plan to collaborate with Tamara G. Kolda. In an initial
evaluation of this triangle matching on synthetic problems, using the
tensor rank-1 approximation alone produced results that identified
the correct solution whereas all matrix approaches could not.

vision for the future

All of these projects fit into the PI’s vision for modernizing the matrix-computation paradigm
to match the rapidly evolving space of network computations. This vision extends beyond
the scope of the current proposal. For example, the web is a huge network with over one
trillion unique URLs (Alpert and Hajaj, 2008), and search engines have indexed over 180
billion of them (Cuil, 2009). Yet, why do we need to compute with the entire network?
By way of analogy, note that we do not often solve partial di↵erential equations or model
macro-scale physics by explicitly simulating the motion or interaction of elementary particles.
We need something equivalent for the web and other large networks. Such investigations may
take many forms: network models, network geometry, or network model reduction. It is the
vision of the PI that the language, algebra, and methodology of matrix computations will
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Simulation analysis 
and large-scale tall-
and-skinny matrix 
factorizations

We did 8192 runs (128 samples of 
bubble locations, 64 bubble radii)
4.5 TB of data in Exodus II (NetCDF)
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https://www.opensciencedatacloud.org/
publicdata/heat-transfer/

Nonlinear heat transfer model in 
random media
Each run takes 5 hours on 8 processors, 
outputs 4M (node) by 9 (time-step) simulation

Constantine et al. SISC 2014 Smoky CSEDavid Gleich · Purdue 
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We used tools like 
the ones I’ll 
describe to build a 
data-driven 
surrogate that is 
about 1000-times 
faster than a 
simulation in bulk.
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Constantine & Gleich, MapReduce 2011.
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Figure 5: The 16 most important principal compo-
nent basis functions (by rows) and the amount of
variance explained by the top 100 (bottom left) and
all principal components (bottom right).

4. CONCLUSION
In this manuscript, we have illustrated the ability of Map-

Reduce architectures to solve massive least-squares prob-
lems through a tall and skinny QR factorization. We choose
to implement these algorithms in a simple Hadoop stream-
ing framework to provide prototype implementations so that
others can easily adapt the algorithms to their particular
problem. These codes are all available online.1 We envi-
sion that the TSQR paradigm will find a place in block-
analogues of the various iterative methods in the Mahout
project. These methods are based on block analogues of the
Lanczos process, which replace vector normalization steps
with QR factorizations. Because the TSQR routine solves
linear regression problems, it can also serve as the least-
squares sub-routine for an iteratively reweighted least-squares
algorithm for fitting general linear models.

A key motivation for our MapReduce TSQR implemen-
tation comes from a residual minimizing model reduction
method [5] for approximating the output of a parameterized
di�erential equation model. Methods for constructing re-
duced order models typically involve a collection of solutions
1See http://www.github.com/dgleich/mrtsqr.

(dubbed snapshots [16]) – each computed at its respective
input parameters. Storing and managing the terascale data
from these solutions is itself challenging, and the hard disk
storage of MapReduce is a natural fit.
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Separable NMF algorithms 
are really geometric

1.  Find the columns of A. "
Equiv. to “Find the extreme 
points of a convex set.”

These columns are preserved under 
linear transformations!
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FIGURE 3 – Three standard examples of dimensionality reduction. The top row shows three raw
datasets and the bottom row shows the output of the technique. Each datapoint is uniquely col-
ored to show its identity before and after the transformation. In PCA, the direction of maximum
variance is the dominant line, which is “unrotated” by projecting onto the dominant principal
component. The dataset for NMF is a mixture of three “samples” represented by the vectors.
Projecting into the non-negative factors (NNFs) recovers the underlying mixture. The manifold
learning example successfully finds a linear structure underlying the curved S.

PCA. Principal components identify the directions of maximum variance in the data. If the
data lie on a k-dimensional linear subspace, then the first k principal components will span this
subspace. These are computable at scale (Constantine and Gleich, 2011; Halko et al., 2011a).

NMF. When the original data are non-negative linear mixture of a components – which is
common in hyperspectral imaging where each pixel’s spectra is a non-negative mixture of elemental
spectra – then the non-negative matrix factorization will recover both the underlying components
and the mixture. This unmixing, or decomposition into parts, is the key di↵erence from PCA (Lee
and Seung, 1999). The underlying NMF computation is NP-complete (Vavasis, 2009), but recent
work has identified a special case of NMF (Donoho and Stodden, 2004) when the problem has a
polynomial time solution (Arora et al., 2012). Many new NMF algorithms and analyses exploit this
case (Esser et al., 2012; Bittorf et al., 2012; Gillis, 2013).

Manifold learning. Manifold learning is a recent approach for dimensionality reduction, when
the data sets lie on a nonlinear manifold rather than in a linear subspace. As our prior work shows
(§4.5), many high dimensional climate data sets lie on a low-dimensional manifold embedded in a
high-dimensional feature space. A number of algorithms have been proposed for this problem, among
which are Isomap (Tenenbaum et al., 2000); Locally Linear Embedding (Roweis and Saul, 2000);
Laplacian Eigenmaps (Belkin and Niyogi, 2003); and Hessian Locally Linear Embedding (Donoho
and Grimes, 2003). Laplacian Eigenmaps has been applied to climate data by Giannakis, Majda,
and Tung, which they call Nonlinear Laplacian Spectral Analysis (NLSA) (Giannakis and Majda,
2012a; Giannakis et al., 2012).

The various approaches proposed to solve the manifold learning problem di↵er in computational
complexity, asymptotic optimality (if any!), whether they solve a local embedding problem or a

5

Separable NMF!
Find H � 0, A(:,K)
where A ⇡ A(:,K)H
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All of the hard analysis is on 
the small dimension of the 
matrix, which makes this very 
useful in practice and 
effectively “linear-time”
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Figure 9: Coe�cient matrix H for SPA, XRAY, and GP for the heat transfer simulation data when r = 10. In
all cases, the non-extreme columns are conic combinations of two of the selected columns, i.e., each column
in H has at most two non-zero values. Specifically, the non-extreme columns are conic combinations of the
two extreme columns that “sandwich” them in the matrix. See Figure 10 for a closer look at the coe�cients.

Figure 8: First 10 extreme columns selected by SPA,
XRAY, and GP for the heat transfer simulation
data. The separation rank r = 10 was chosen based
on the residual curves in Figure 7. For the heat
transfer simulation data, the columns with larger
indices are more extreme. However, the algorithms
still select di↵erent extreme columns.

cific targets on the surface of blood cells. The phenotype
and function of individual cells can be identified by decod-
ing these label combinations. The analyzed data set contains
measurements of 40,000 single cells. The measurement fluo-
rescence intensity conveying the abundance information was
collected at five di↵erent bands corresponding to the FITC,
PE, ECD, PC5, and PC7 fluorescent labels tagging antibod-
ies against CD4, CD8, CD19, CD45, and CD3 epitopes.

The results are represented as the data matrix A of size
40, 000 ⇥ 5. Our interest in the presented analysis was to
study pairwise interactions in the data (cell vs. cell, and
marker vs. marker). Thus, we are interested in the matrix
X = A⌦A, the Kronecker product of A with itself. Each row

Figure 10: Value of H matrix for columns 1 through
34 for the SPA algorithm on the heat transfer sim-
ulation data matrix with separation rank r = 10.
Columns 1 and 34 were selected as extreme columns
by the algorithm, while columns 2 through 33 were
not. The two curves show the value of the matrix
H in rows 1 and 34 for many columns. For these
columns of H, the value is negligible for other rows.

of X corresponds to a pair of cells and each column to a pair
of marker abundance values. X has dimension 40, 0002 ⇥ 52

and occupies 345 GB on HDFS.
Figure 11 shows the residuals for the three algorithms

applied to the FC data for varying values of the separa-
tion rank. In contrast to the heat transfer simulation data,
the relative errors are quite large for small r. In fact, SPA
has large relative error until nearly all columns are selected
(r = 22). Figure 12 shows the columns selected when r = 16.
XRAY and GP only disagree on one column. SPA chooses
di↵erent columns, which is not surprising given the relative
residual error. Interestingly, the columns involving the sec-
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FIGURE 2 – The plot shows the empirical performance of our maximum
clique finder (Rossi et al., 2013) on 30 real-world social and information
networks with between 1000 vertices and 100,000,000 vertices. We see a
near linear runtime over this collection of graphs, from which we hypothe-
size that we will be able to characterize network properties that guarantee
polynomial runtime for max-clique.

I1. Practical Complexity
Establish new results 
for polynomial dense 
subgraph methods using 
graph properties.

Gebremedhin & 
Gleich's
clique finder 

Priors, Models 
& Significance ApplicationsAlgorithms High-Perf.

Computing

inspired
this new
proposal

Roughgarden & 
Seshadhri's
triangle-dense 
decomposition

Grama's statistical 
subgraph significance 

p < 0.001

Theory

I2. Stat. significance
Design tests for the 
significance of dense 
subgraphs using
application-relevant priors.

I3. Dist. implementation
Create fast, heterogenous 
multi-core, distributed, 
methods for dense 
subgraph detection.

I4. Impact
Understand how fast 
dense subgraph methods 
help NP-hard problems in 
diverse applications.

Seshadhri GebremedhinRoughgarden Gleich Grama

FIGURE 3 – An overview of the proposed research under four umbrella Investigation themes, roughly mapped
to the five areas Theory, Statistical Models, Algorithms, High-Performance Computing, and Applications. The
figure also indicates each investigator’s primary areas of expertise and role as it relates to this proposal. The inter-
displinary composition of the team coupled with the identified synergies will enable us to successfully pursue the
proposed research.

various subgraphs under a variety of null models has important algorithmic and computational
implications regarding their detection and interpretation.

I3 - §6.3. How can dense subgraph detection algorithms be parallelized on contemporary and emerging
complex, heterogeneous multi-core and many-core platforms? We hypothesize that scalable and
e�cient distributed implementation of dense subgraph detection algorithms can be achieved using
architecture-aware, nested, multi-level parallelism.

I4 - §6.4. What are the impacts of empirically fast dense subgraph detection algorithms? Many important
NP-hard problems in data mining, computational social science, and temporal networks reduce to
finding dense structures in a derived graph. We hypothesize that we can use the proposed dense
subgraph detection methods on the reduced problems to develop practical algorithms with fast
runtimes for a wide variety of important applications.

Figure 3 shows a visual synopsis of our proposed research.

2 EXPECTED SIGNIFICANCE AND BROADER IMPACT
This project advances three important directions in algorithmic research: (a) understanding the intrin-

sic di�culty of dense subgraph detection problems beyond simple worst-case analysis, (b) understanding

2

Fig. 3. An example used to illustrate the
workings of Algorithm 2. See discussion at the
end of Section 4.3.
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we immediately return and add the vertex to the list of searched vertices. If it isn’t,
then we compute a greedy coloring of the subgraph using the degeneracy order in
order to obtain the coloring bound from Fact 3.2 (Equation (3.1)). We check against
this bound, and we immediately return if the comparison suggests no larger clique is
present. If none of these checks pass, then we enter into a recursive procedure that
examines all subsets of the neighborhood in a search for cliques (Branch).

The procedure Branch maintains a reduced neighborhood subgraph P and a
clique C. The invariant shared by these sets is that we can add a vertex from P to C
and get a clique one vertex larger. We pick a vertex and do this. To be precise, we
pick the vertex with the most-recently introduced color (in our implementation, this is
the largest color where colors are positive integer numbers), as this is a weak clique
indicator. We then check if the clique C 0 is maximal by testing if there exists any set
P 0 that satisfies the invariant. If C 0 is maximal, then we compare it against the current
best clique H , and update H if C 0 is larger. If it is not, then we test if it is possible that
C 0 and P 0 have a large clique. The largest clique possible is |C 0|+!(P 0)  |C 0|+L(P 0),
and so using the function Color, we compute a new greedy coloring to get the upper
bound L(P 0). Unlike the greedy coloring in InitialBranch, here we do not use the
degeneracy ordering as it was not worth the extra work in our investigations. If C 0

and P 0 pass these tests, we recurse on C 0 and P 0.

Discussion of Figure 3. We use the example in Figure 3 to illustrate several
of the points we have been discussing thus far. The core number K(G) of this graph is
4, which yields the upper bound of 5 on the maximum clique size. The clique detected
by our heuristic is {1, 8, 23}; the graph has two maximum cliques: {19, 20, 21, 22}
and {23, 24, 25, 26}. Our algorithm removes vertices 10, 11, 12, 13 and 16, 17, 18 in the
initial pruning. Subsequently, our method will explore vertex 9 and remove it based
on the maximum neighborhood core of 3. It explores vertex 15 next and removes it
due to the neighborhood core bound. It then removes vertex 14 due to an insu�cient
degree. Subsequently, it finds the clique around vertex 19, then prunes all vertices
except 1 through 8 due to core number bounds. Finally, it eliminates vertex 1 due
to the neighborhood core bound; all other vertices are then iteratively removed via
degree bounds.

10
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Sidenote 3-loop  
GEMM,  LINPACK are 
O(|data|3/2) too!

Find the largest clique on 
a multi-billion edge graph 
In 20m on 16-cores



Fast min-cut solvers for large graphs
s,t-mincut !
Given an undirected graph, two marked 
nodes, find the best cut separating 
them. 

•  Separating water-from-fat in 
MRI

•  Improving graph partitions
•  Object extraction, image 

restoration, etc.
Often have a sequence of probs
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Fast min-cut solvers for large graphs
s,t-mincut !
Given an undirected graph, 
two marked nodes, find the 
best cut separating them. 

•  Best algorithms 
use max-flow 
relationships and 
are serially bound.
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Mincut to sequence of!
Laplacian linear systems
minimize kCBxk

1
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◆Variational representation of 1-norm

Jointly convex 
optimization over
•  The solution x
•  An edge-weight 

vector w
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Now, use an alternating algorithm over x and w
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Mincut to sequence of!
Laplacian linear systems

Jointly convex 
optimization over
•  The solution x
•  An edge-weight 

vector w

Now, use an alternating algorithm over x and w

1. Compute w
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The hard step!
But this is a "
Laplacian lin. sys.

Zhu and Gleich, arXiv: 1501.03105 Smoky CSEDavid Gleich · Purdue 



Solving the big linear system
The algorithm is now a sequence of big linear 
systems which are weighted Laplacians.

Figure 2: Node voltage polarization. Each row is a sorted voltage vector x(l).

5.4 Performance evaluation on large graphs

We evaluate the empirical performance of PIRMCut on the five largest graphs in Table 1. Our parallel
implementation of PIRMCut is written in C++, and it is purely based on MPI, no multi-threading
is exploited. In particular, the parallel PCG solver with block Jacobi preconditioner is implemented
using the PETSc5 package [28]. All the experiments are conducted on a cluster machine with a total
number of 192 Intel Xeon E5-4617 processors (8 nodes each with 24 cores). All the results reported
in the following are generated using: smoothing parameter ✏ = 10�6, number of IRLS iterations
T = 50, warm start heuristic, and 50 PCG iterations at maximum. And on the road networks,
we use exact LU factorization by UMFPACK [10] to solve the subsystems (12), while on the N-D
grid graphs we use ILU(0) in PETSc [28]. For implementing the two-level rounding procedure in
PIRMCut we use the Boykov-Kolmogorov solver6 [6], which is a state-of-the-art max-flow solver
that can handle floating-point edge weights. We refer to it as the B-K Solver in the following.
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Figure 3: Parallel scalability of the IRLS iterations of PIRMCut on four large graphs.

We first study the parallel scalability of the IRLS iterations. The timing results of parallel IRLS
iterations on four graphs are plotted in Figure 37. In Figure 3, we see the speedup starts is initially
superlinear. This happens because, as p gets large, the total work of applying the block Jacobi
preconditioner decreases. On asia osm, we can achieve linear speedup until p = 128. On two of
three N-D grid graphs, the linear speedup stops after p = 64. One reason is that the N-D grid
graphs are denser than the road networks (see Table 1), which would incur high communication

5
http://www.mcs.anl.gov/petsc/

6
http://pub.ist.ac.at/

~

vnk/software.html

7The result on euro asm is not plotted because its time on 8 cores will dwarf the others.
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•  Use PETSc / and 
Block Jacobi 
preconditioned CG to 
solve the Laplacians

•  Exploit “discrete” info 
in the continuous 
solution to round 
faster.

•  Convergence theory 
too.

Zhu and Gleich, arXiv: 1501.03105 Smoky CSEDavid Gleich · Purdue 



Performance on benchmark 
graphsTable 1: All graphs are undirected and we report the size of the non-terminal graph.

Graph |eV| |eE|
usroads-48 126,146 161,950

asia osm 11,950,757 12,711,603
euro osm 50,912,018 54,054,660

adhead.n26c100 12,582,912 163,577,856
bone.n26c100 7,798,784 101,384,192
liver.n26c100 4,161,600 54,100,800
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Figure 1: The number of PCG iterations to reach a residual of 10�3 is reduced by roughly 20% by
using warm starts for this sequence of Laplacian systems.

5.2 The e↵ect of warm starts

On the graph of usroads-48, we demonstrate the benefit of the warm start heuristic described in
Section 3.1. We set the smoothing parameter ✏ = 10�6 and run the IRLS algorithm for 50 iterations
on 4 MPI processes. For each IRLS iterate, we set the maximum number of PCG iterations to be
300, and the stopping criterion in relative residual to be 10�3. In Figure 1 we plot the number of
PCG iterations of using warm starts and cold starts. It is apparent that for most IRLS iterates,
warm starts help to reduce the number of needed PCG iterations significantly, especially for later
IRLS iterates. Another interesting phenomenon we observe from Figure 1 is that the di�culty of
solving the reduced Laplacian system increases dramatically during the first several IRLS iterates,
and then decreases later on. A possible explanation is that the IRLS algorithm makes faster progress
during the early iterates.

5.3 E↵ect of node voltage polarization

Continuing with usroads-48 as an example, we demonstrate node voltage polarization, which
motivates the idea of two-level rounding procedure (see Section 3.4). We plot a heatmap of x(l)

(after sorting its components) for l = 0, . . . , 50 in Figure 2. It is apparent that the polarization gets
emphasized as l becomes larger. We also see from Figure 2 that the values of x(l) change quickly for
l  10, which reinforces the observation of the IRLS algorithm making faster progress early.

9

cost when p is large. Another reason is that the use of ILU(0) on N-D grid graphs makes the work
reduction not that critical after p is large enough.

In Table 2 we show the time of di↵erent phases of PIRMCut for the given number of cores shown
in the last column. We also show in the second to last column the size reduction ratio achieved
during the two-level rounding procedure. On the graphs of adhead.n26c100 and bone.n26c100,
the size reduction is so dramatic that the time taken by the two-level rounding procedure is even
less than that of sweep cut on the original graph. However, on the graph of liver.n26c100, the
size reduction is not e↵ective and the time of the sequential two-level rounding procedure is even
much more than that of IRLS iterations.

Table 2: Time of di↵erent phases of PIRMCut. All the times are in seconds (rounded to integers).
The second to last column shows the size reduction ratio of the two-level graph coarsening.

Graph Graph Partition IRLS Sweep Cut Two-level |V|/|Vc| Number of cores
asia osm 5 28 3 16 80.5 128
euro osm 7 185 17 109 36.2 128

adhead.n26c100 1 172 6 1 432.4 64
bone.n26c100 1 99 4 1 376.9 64
liver.n26c100 1 25 2 69 10.1 64

Table 3: Time comparison between PIRMCut and B-K Solver. All the times are in seconds (rounded
to integers). We use the time of two-level for getting the total time of PIRMCut.

Graph PIRMCut B-K Solver Speedup Number of Cores
asia osm 49 1465 29.8 128
euro osm 301 3102 10.3 128

adhead.n26c100 174 555 3.2 64
bone.n26c100 101 215 2.1 64
liver.n26c100 95 294 3.1 64

Finally, we compare the performance of PIRMCut with that of B-K Solver. The B-K Solver
is a sequential code, and we run it on one Intel Xeon E5-4617 processor. The total time taken
by PIRMCut and B-K Solver respectively on the five large graphs are shown in Table 3. On the
road networks, our PIRMCut achieves desirable speedup using 128 cores. Especially on asia osm,
PIRMCut is almost 30-times faster than B-K Solver. In contrast, we find B-K Solver to be really
e�cient on the N-D grid graphs. It is interesting that even though the road networks are planar
and sparser, they seem to be much harder than the N-D grid graphs for the B-K Solver.

We then use the output of the B-K Solver to evaluate the quality of the approximate s-t min-cut
achieved by sweep cut and the two-level rounding procedure. Specifically, we denote by µ⇤ the s-t

Table 4: Solution quality of sweep cut and two-level. The right two columns are the relative
approximation ratio �.

Graph Sweep Cut Two-level
asia osm 2.1⇥ 10�3 3.3⇥ 10�5

euro osm 3.2⇥ 10�2 6.8⇥ 10�5

adhead.n26c100 1⇥ 10�4 0
bone.n26c100 9.7⇥ 10�4 0
liver.n26c100 4.9⇥ 10�2 8.8⇥ 10�4
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System 8 nodes,"
24 cores (E5-4617)

nodes edges

Zhu and Gleich, arXiv: 1501.03105 Smoky CSEDavid Gleich · Purdue 



Challenges for the next 5 years!
1.  Extend “e-linear-time” matrix analysis to thick matrices  (100k

+ columns).
2.  Parallelize more “hard” graph algorithms.
3.  New compression for reducing IO bottlenecks (not new)
4.  Take advantage of properties of real-world computational 

problems, e.g. low-rank objective structure, real-world graph 
props for faster algorithms

5.  Understand what we should compute on large graphs in light 
of increased noise/data

6.  Statistical significance of graph features/patterns
7.  Algorithmic resilience without system overhead.
8.  Quad precision for accurate big-data matrix computations.

Smoky CSEDavid Gleich · Purdue 



PageRank on the Twitter 
graph on a Raspberry Pi

Raspberry Pi 4 core ARM CPU, 1GB RAM
Twitter graph 40m nodes, 1.4B edges. 6GB on disk
PageRank iteration with USB on-disk graph
4m 14s (25 MB/sec) = 72% of peak USB speed
Streaming the graph alone 3m 30s (82% of peak)
2% of energy of HPC solutions (Big Data frameworks). 
Goal 2 min per iteration with compression (142% of peak)

Rainey and Gleich, In progress Smoky CSEDavid Gleich · Purdue 



Using a local algorithm implicitly 
regularizes a mathematical model
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Zhou+Push

Zhou is an “exact” algorithm involving
solving a linear system.

Zhou + Push is a fast approximation.
It outperforms Zhou due to implicit
regularization properties.

This is a win-win! Faster algorithm,"
better performance!

Gleich and Mahoney, KDD 2015
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The graph-based data analysis pipeline
1 0 0 0 1 0 0 1
0 1 0 1 0 0 1 1
0 1 0 1 0 0 0 1
1 0 0 0 0 0 1 1
1 1 0 1 1 1 0 1
1 0 1 1 0 0 0 1
1 0 1 1 1 0 1 0
1 1 1 1 0 1 0 0
1 1 1 0 0 1 1 1
1 1 0 1 1 1 1 1

"
Raw data!
•  Relationships
•  Images
•  Text records
•  Etc.

"
Convert to a graph!
•  Nearest neighs
•  Kernels
•  2-mode to 1-mode
•  Etc.

"
Algorithm/Learning!
•  Important nodes
•  Infer features
•  Clustering
•  Etc.

Smoky CSEDavid Gleich · Purdue Gleich and Mahoney, KDD 2015



Graph-based learning is usually only 
one component of a big pipeline

Smoky CSEDavid Gleich · Purdue 
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Many databases over"
genes with survival rates"
for various cancers

List of possible genes"
responsible for survivalCluster analysis

Reinteration of data

THIS STEP SHOULD!
BE ROBUST TO !
VARIATIONS ABOVE!

Gleich and Mahoney, KDD 2015



I found something in a graph. 
Is it significant?

What is a prior for a graph?
•  Erdős–Rényi
•  Weighted (skewed) Erdős–Rényi
•  Kronecker (R-mat)

Will result in huge computational issues

A $8,000 matrix computation 

David Gleich (Purdue) IU Seminar 

 
925 nodes and 7400 processors on Redsky for 10 hours normalized Laplacian matrix 

20/51 

Eigenvalue 
spectrum of a 
500k node graph, 
7400 cores (925 
nodes) RedSky for 
10 hours

Classic spectra 

David Gleich (Purdue) IU Seminar 

From NASA: http://imagine.gsfc.nasa.gov/docs/science/how_l1/spectral_what.html 
28/51 

Spikes! 

David Gleich (Purdue) IU Seminar 

1.5, 0.5 

1.33 (two!) 

1.5 

1.5 (two) 

1.833 
0.565741 
1.767592 

0.725708 
1.607625 
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We can develop computational 
analogs of erasure coding (RAID)!

Raw system Ax = b n ⇥ n
Encoded system

˜Ax̃ =

˜

b (n + k ) ⇥ (n + k )

Zhu, Gleich, Grama arXiv:1412.7364

We can build Ã with only a small amount of reliable work
!
If we run CG on the encoded system, then we can ignore 
up to k faults.

We can recover x from    with k arbitrary components with 
a small amount of reliable work.

Does this work for other problems? Real-world feasible?

x̃

Smoky CSEDavid Gleich · Purdue 
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