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Talk Outline
1. Flame theory, simulation (scales, methods)

2. Validation (sources of error)

3. Novel simulation approach (controlled flames)
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Premixed Flames

Unlike diffusion flames, where burning rate is controlled by mixing of
fuel/oxidizer, premixed flames burn freely into fuel
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Practical considerations
Turbulence - enhance flame surface density (efficiency/device size)

Lean Fuel - low temperature/emissions, flame stabilization difficult
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Turbulent Premixed Flames

Turbulence (`t, u
′) vs. flame scales (δT , sL)
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Simulation Goal:
1. Energetics (detailed flame dynamics, stability)

2. Flame chemistry (emissions, pollutant formation)
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Relevant Scales

Length and velocity scales:

Fuel pipe: 5 − 10 (cm)

Flame thickness: δT ∼ 600 (µm)

Turbulence intensity: 3 − 6 % mean flow

Turbulence scales: η/`t ∼ 0.2/3 (mm)

Mean Flow/Acoustic Speed: 3/350 (m/s)

“Fully-resolved” simulations require more than
O(10)species ×O(1012)cells ×O(108)steps
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Simulation Approach

Key observations Flow velocity � acoustic speed

Flame thickness � domain size

Approach Low Mach number formulation
– Remove acoustics analytically
– No explicit models for turbulence or

turbulence/chemistry interaction (“MILES” -
Monotone Implicit LES)

Adaptive mesh refinement
– Dynamically localize computational work

Parallel implementation
– Distributed memory, heterogeneous load balance

Dominant costs Algorithm complexity

Parallel communication (elliptic projection operator)

Detailed chemistry evolution (ODE integration)
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V-Flame Simulation

Strategy: Independently characterize turbulence generation in nozzle, and
specify as inlet boundary conditions to reacting flow simulation

Simulation:

12 × 12 × 12 cm domain
Methane/air (φ = 0.7) at 3 m/s

Turbulence:
– `t = 3.5 mm, u′ = 0.18 m/s (6%)
– η = 220 µm (∆x = 312.5µm)

No flow condition to model rod
DRM 19, 20 species, 84 reactions

Differential species diffusion

Weak air co-flow

Rod-stabilized V-Flame

5 cm
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V-Flame: Validation
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Joint work with R. Cheng, I. Shepherd and M. Johnson (to appear in PNAS, 2005).
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Sources of Error

Model assumptions, discretization errors
– Self-consistency checks, numerical convergence analysis, etc

Input databases, interpretation of experimental data
– Chemical kinetics, thermodynamics, species transport
– Data extraction from experimental observation: line-of-sight,

plane-projected 3D fields, signal modification (PLIF quenching), etc.

....both only recently addressable for lab-scale turbulent flames

Configuration: inlet turbulence characterization, the “laboratory
response” of an unconfined flame, stabilization details

– Can we explore flame details in a “cleaner” setting, yet remain
relevant to experiments?
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Controlled Premixed Flames

How does one study premixed turbulent flames?

Laboratory (requires stabilization mechanism)
– Swirl
– Stagnation plate
– Rod or bluff body
– Pilot flame or heated wire

What about computational studies?
– Simulate a complete laboratory flame (expensive!)
– Embed a flame in turbulence, then evolve
– Inflow turbulence and let it interact with the flame

Rutland/Trouve (1993) Trouve/Poinsot (1994)
Zhang/Rutland (1995) Tanahashi, et al (2000,2002)
Bell et al. (2002) Cant et al. (2002)
Chakraborty/Cant (2004)
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Turbulent Flame Dynamics

In flamelet regimes (wrinkled, corrugated), the fuel consumption rate
determined primarily by flame surface area, increases with turbulence
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Propagation in spatially decaying turbulence

Inflow too fast, flame drifts up, wrinkles less

Inflow too slow, drifts down, wrinkles more
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As in the physical situation, natural flame instability
makes this configuration non-stationary.
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Controlled Flame

Use control algorithm to stabilize flame
– Simple geometry
– Statistically stationary
– Detailed characterization of turbulent flame behavior

Dynamically adjust inflow velocity, vin

– Flame location defined as total fuel mass in domain
– Unknown turbulent flame speed, s, represents average speed of

propagation

Stochastic ODE model

dx = (vin − s(x)) dt + dω

– Given x(0), compute vin to drive x(t) to a desired value and hold it
there long enough to collect flame statistics

– Require for numerics that vin be smooth and positive
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Turbulent Flame Regimes

Since (δT , sL) vary with φ, we compute 3
controlled 2D CH4/air flames:

φ = 0.55, 0.75, 1.0

GRIMech-3.0
(53 species, 325 reactions)

Identical scaled `t, u′

∆x = L/1024 ∼ δT /22

After stabilization, statistics over ∼ 5`t/u′

Typical 2D controlled flame surface
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Consumption Rate Variability
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Local Flame Analysis

Curvature x Flame Thickness
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Use chemistry/transport detail and turbulence statistics to explain:

1. Correlation shift with mixture fraction, φ

2. Identical (scaled) curvature range/statistics
Collaboration with van Oijen/Bastiaans/de Goey

Technische Universiteit Eindhoven, The Netherlands
Advanced flamelet models based on integrals of “stretch” through flame

Tools for Laboratory-Scale Flame Simulation – p. 15/19



Thermo-diffusive Effects
Flame wrinkle structures from low-swirl experiment

H2, φ = 0.3 C3H8, φ = 0.75CH4, φ = 0.8

13 cm

PIV

OH-PLIF

Identical fueling rate/turbulence, range of burning modes due to
thermo-diffusive instability of light fuel.

(Apparent) local extinction, how to analyze experimental data?

Can we use simulation to help understand these flames?
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Control Application

Use computational flame-control algorithm to study dynamics of flame
surfaces in the central region of low-swirl burner experiments without the
complexity of the LSB nozzle flow details

H2, φ = 0.37 C3H8, φ = 0.75CH4, φ = 0.8

8 cm

2D controlled flames: three fuels (molecular weight)
(turbulence/fuels correspond roughly to experimental data)

Simple systems reproduce observed wrinkling behaviour

Use 3D simulation to characterize local extinction,
wrinkle-suppression, etc.
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Thermo-diffusive Effects
Early 3D results

OH PLIF - experiment X(OH) - simulation

3D controlled hydrogen flame

Detailed/resolved chemistry,
differential diffusion

Structure of turbulence/wrinkling,
OH signal variability

T = 1200 surface
(color: consumption rate)

Extinction where highly curved
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Ongoing Research

Controlled TD unstable flame
studies

– Higher-order transport effects

Collaboration with
experimentalists:

– Interpreting measured data
– Experiments w/flame “isolation”

Wire-Stabilized Flame
(Cheng, LBNL)

Slot Burner
(Driscoll, U. Mich.)

Flamelet model validation:
(w/van Oijen, et. al)

3D resolved flames
Integrated stretch,

Ka ∼
∫

Flame κds

To include Lei effects
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