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Talk Outline roeee) §

1. Flame theory, simulation (scales, methods)
2. Validation (sources of error)
3. Novel simulation approach (controlled flames)

Collaborators

CCSE - Internal External
m A. Almgren m R. Cheng, |. Shepherd, M. Johnson(LBNL) - Premixed flame
m V. Beckner experiments
= J. Bell m S. Woosley, M. Zingale (UCSC) - Type 1a supernovae
" J. Grear m J. van Oijen (TU/e The Netherlands) - Generalized flamelets
m M. Lijewski : :
m P Glarborg, A. Jensen (DTU Denmark) - Combustion chemistry
m C. Rendleman

C. Schulz, W. Bessler (U. Heidelberg) - Flame diagnostics
m W. Green, M. Singer (MIT) - PDF method validation
S. Tonse (LBNL) - Combustion chemistry

m C. Rutland (UW Madison) - Turbulent flame interaction, sprays
diagnostics
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Premixed Flames :%

Unlike diffusion flames, where burning rate is controlled by mixing of
fuel/oxidizer, premixed flames burn freely into fuel
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Practical considerations
B Turbulence - enhance flame surface density (efficiency/device size)
B | ean Fuel - low temperature/emissions, flame stabilization difficult
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Turbulent Premixed Flames ’f%

Turbulence (¢4, ') vs. flame scales (57, s1,)
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Simulation Goal:
1. Energetics (detailed flame dynamics, stability)
2. Flame chemistry (emissions, pollutant formation)
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Relevant Scales gaas.. ol

Length and velocity scales:

= Fuel pipe: 5 — 10 (cm)

= Flame thickness: 67 ~ 600 (um)

= Turbulence intensity: 3 — 6 % mean flow
= Turbulence scales: n/¢; ~ 0.2/3 (mm)

= Mean Flow/Acoustic Speed: 3/350 (m/s)

“Fully-resolved” simulations require more than
O(10)species x O(10*%)cells x O(10°)steps
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Simulation Approach :%

Key observations = Flow velocity < acoustic speed
= Flame thickness <« domain size

Approach = Low Mach number formulation
— Remove acoustics analytically

— No explicit models for turbulence or
turbulence/chemistry interaction (“MILES” -
Monotone Implicit LES)

= Adaptive mesh refinement
— Dynamically localize computational work

= Parallel implementation
— Distributed memory, heterogeneous load balance

Dominant costs = Algorithm complexity
= Parallel communication (elliptic projection operator)
= Detailed chemistry evolution (ODE integration)
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V-Flame Simulation ’N
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Strategy: Independently characterize turbulence generation in nozzle, and
specify as inlet boundary conditions to reacting flow simulation

Simulation:
m 12 X 12 x 12 cm domain
= Methane/air (¢ = 0.7) at 3 m/s

= Turbulence:
— ¢ =35mm, v =0.18 m/s (6%)
— n =220 um (Ax = 312.5um)

= No flow condition to model rod

= DRM 19, 20 species, 84 reactions

Rod-stabilized V-Flame

= Differential species diffusion
= Weak air co-flow
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V-Flame: Validation :%

(click image for movie)
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Joint work with R. Cheng, |. Shepherd and M. Johnson (to appear in PNAS, 2005).
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Sources of Error gaas., ol

= Model assumptions, discretization errors
— Self-consistency checks, numerical convergence analysis, etc

= Input databases, interpretation of experimental data
— Chemical kinetics, thermodynamics, species transport

— Data extraction from experimental observation: line-of-sight,
plane-projected 3D fields, signal modification (PLIF quenching), etc.

....both only recently addressable for lab-scale turbulent flames

= Configuration: inlet turbulence characterization, the “laboratory
response” of an unconfined flame, stabilization details

— Can we explore flame details in a “cleaner” setting, yet remain
relevant to experiments?
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Controlled Premixed Flames ’N
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How does one study premixed turbulent flames?

= | aboratory (requires stabilization mechanism)
— Swirl

— Stagnation plate

— Rod or bluff body

— Pilot flame or heated wire

= What about computational studies?

— Simulate a complete laboratory flame (expensive!)
— Embed a flame in turbulence, then evolve

— Inflow turbulence and let it interact with the flame

Rutland/Trouve (1993) Trouve/Poinsot (1994)
Zhang/Rutland (1995) Tanahashi, et al (2000,2002)
Bell et al. (2002) Cant et al. (2002)

Chakraborty/Cant (2004)
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Turbulent Flame Dynamics fm

In flamelet regimes (wrinkled, corrugated), the fuel consumption rate
determined primarily by flame surface area, increases with turbulence

Turbulent Burning Speed
Mean Flow sl

Turbulence Intensity

Decreasing turbulence intensity sl

Propagation in spatially decaying turbulence

= Inflow too fast, flame drifts up, wrinkles less

(Turbulence Generation Source)

= Inflow too slow, drifts down, wrinkles more

As in the physical situation, natural flame instability
makes this configuration non-stationary.
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Controlled Flame e

= Use control algorithm to stabilize flame

— Simple geometry

— Statistically stationary

— Detailed characterization of turbulent flame behavior

= Dynamically adjust inflow velocity, v;,,
— Flame location defined as total fuel mass in domain

— Unknown turbulent flame speed, s, represents average speed of
propagation

= Stochastic ODE model
dr = (v — s(x)) dt + dw

— Given z(0), compute v;,, to drive x(¢) to a desired value and hold it
there long enough to collect flame statistics

— Require for numerics that v;,, be smooth and positive
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Turbulent Flame Regimes :{

Since (61, sr) vary with ¢, we compute 3 I .
controlled 2D CH4/air flames: = 91 : 8'32 o
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Consumption Rate Variability :m
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Local Flame Analysis :%
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Use chemistry/transport detail and turbulence statistics to explain:
1. Correlation shift with mixture fraction, ¢
2. ldentical (scaled) curvature range/statistics

Collaboration with van Oijen/Bastiaans/de Goey
Technische Universiteit Eindhoven, The Netherlands
Advanced flamelet models based on integrals of “stretch” through flame
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Thermo-diffusive Effects ’N
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Flame wrinkle structures from low-swirl experiment

OH-PLIF . .

= |dentical fueling rate/turbulence, range of burning modes due to
thermo-diffusive instability of light fuel.

= (Apparent) local extinction, how to analyze experimental data?
= Can we use simulation to help understand these flames?
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Control Application

BERKELEY AB

Use computational flame-control algorithm to study dynamics of flame
surfaces in the central region of low-swirl burner experiments without the
complexity of the LSB nozzle flow details

= 2D controlled flames: three fuels (molecular weight)
(turbulence/fuels correspond roughly to experimental data)

= Simple systems reproduce observed wrinkling behaviour

» Use 3D simulation to characterize local extinction,
wrinkle-suppression, etc.
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Thermo-diffusive Effects e

Early 3D results T = 1200 surface
(color: consumption rate)

OH PLIF - experiment ] X(OH) - simulation

3D controlled hydrogen flame

= Detailed/resolved chemistry,
differential diffusion

= Structure of turbulence/wrinkling,
OH signal variability

Extinction where highly curved
Click image for movie
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Ongoing Research :%

Click image for movie

» Controlled TD unstable flame
studies

— Higher-order transport effects

= Collaboration with
experimentalists: ,

— Interpreting measured data Wire-Stabilized Flame Slot Burner

— Experiments w/flame “isolation”  (Cheng, LBNL) (Driscoll, U. Mich.)

Flamelet model validation:
(W/Van Oijen, et. al) m 6756.25 }%\

i 4894 .48

= 3D resolved flames 30—
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= Integrated stretch, e g s
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Scaled Integrated Curvature, Ka
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