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Our Team and Collaborators

Future Technologies Group
– Sadaf Alam
– Richard Barrett
– Nikhil Bhatia
– Ken Roche
– Philip Roth
– Olaf Storaasli (Sept 1)
– Jeffrey Vetter

Collaborators
– Melissa Smith
– Pat Worley
– Tom Dunigan
– Pratul Agarwal
– SciDAC PERC Team
– DARPA HPCS Team
– U of Oregon Tau Team
– U of Tenn ICL Team
– Vendors
– Many others…

Performance analysis, 
evaluation, and modeling of 
architectures in support of 
scientific computation
Research and development of 
software and algorithms for 
HPC
ExCL (Experimental Computing 
Lab) for examining new 
technologies

– FPGAs
– Array processors
– Optical processors
– Multicore processors
– …

http://www.csm.ornl.gov/ft
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Increasing Uncertainty in Performance 
Analysis, Evaluation, and Prediction

The past decade of HPC had processors and 
interconnects that were ‘relatively’ easy to 
understand, analyze, and predict

The next decade of HPC will unveil technologies 
that make analysis, evaluation, and prediction 
more challenging

– Scale
– Architecture complexity
– Application complexity
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Scale
Past decade has 
applications that scale 
from O(1) to O(1000) 
levels of concurrency

– Hidden assumptions that 
algorithms at O(10) are 
effective at O(1000)

– MPI specification ensures 
function portability, not 
performance portability

Next decade will needs 
applications that scale to 
O(10,000,000) levels of 
concurrency 

– With appropriate 
languages, tools, etc

– Transparent support for 
reliability
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Architectural Complexity

Architectures are changing 
radically at the node, core level

– Multicores, multiple 
interconnects, etc.

– Experimental architectures 
present more challenges
•Streaming, FPGAs, 
accelerators

Performance response of 
architectures is highly 
discontinuous

– Small changes in 
applications, system 
software, or architectures 
can produce ‘catastrophic’
performance differences
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Application Complexity

Multi-phase, multi-scale applications present challenges 
in performance uncertainty

– Multiple languages
– Multiple phases of physics, chemistry
– Adaptive meshing, solving, etc
– What is good performance?

Applications teams know this best!

Science-based metrics that reflect real problems and 
their characteristics must drive the design and 
procurement of new systems
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An Example of Uncertainty in 
Performance: HPC Challenge 
Benchmarks

HPC Challenge has two versions
Base

– Portable: Functional across 
‘most’ platforms

– Represents legacy codes (or 
otherwise immutable)

Optimized
– Match application characteristics 

to architectural strengths

Both versions are valid
Distance between Base and 
Optimized proportional to 
performance uncertainty?
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Improvement on Cray X1 (64 MSPs)
Optimized/Baseline

Joint work on HPCC for X1 with Cray, GWU.

1.0 1.1

2.9

1.5

0

0.5

1

1.5

2

2.5

3

3.5

4

HPL RA PTRANS FFT STREAMS

723

Uncertainty



Ok, these are all challenging 
problems. Should we just accept 

it as is?
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Of course not, 
We should embrace the uncertainty…

Know your applications
– Map application requirements to architectures
– Use performance analysis and modeling to prioritize 

optimization, hardware acceleration efforts

Work closely with applications team to adapt their codes 
to new technology

– Integrate performance engineering directly into the software 
development process

– Develop scalable techniques for performance analysis

Evaluate next-generation and experimental architectures 
for potential acceleration (and feed this back to vendors)



Know your Applications
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Empirically Measured Application 
Characteristics Reveal True Behaviors

Using Sequoia tracing tool to capture salient 
communication and computation characteristics 
of applications

– MPI command and parameters
– Computational block summaries

•Flops, instructions, loads, stores

Current status
– POP, GYRO, AMBER(JAC), AMBER(HHAI), HYCOM, 

LAMMPS, WRF, SWEEP3D, SPPM

Work by Future Tech team.
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Summarized Empirical Data Show 
Range of  Requirements for 
Applications

Each metric normalized to range
of zero to one.
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POP Metric Breakdown by Basic Block

Developed detailed 
understanding of POP 
computation and 
communication

Models match 
measurement closely

Computational Intensity Message Intensity
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POP Execution Time Predictions

Use collection of detailed models to create execution 
time predictions
Validated POP model on ORNL systems

– Note that this is a strong scaling model
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Models Enable Exploration of Design 
Space

With models in hand, we can 
– Explore the parameter design space
– Predict requirements at larger scale

POP
-20% 0% 20%

20% 0.91 1.04 1.16
0% 0.88 1 1.14

-20% 0.85 0.97 1.11

Latency

Bandwidth



Collaborate with Applications 
Teams to use New Technology 
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Computational Biology using
Molecular Modeling

The structure, dynamics and function of 
biomolecular complexes are inter-related
Various aspects of biomolecules structure 
and function span multiple scales of time 
and length
Wide community of biologist are interested 
in the multi-scale modeling of biomolecules
Multi-scale modeling of a real system may 
require 1 peta-flop/s for an entire year!
Scaling of existing software packages and 
algorithms is limited

Joint work between Sadaf Alam and Comp 
Biologist Pratul Agarwal at ORNL.
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Computer Simulations
(Molecular Dynamics)

Mathematical (potential) function

– Bond stretching, angle bending, angle torsion and 
the non-bond term

– Degree of freedom = 3N-6, where N=number of 
atoms

– Number of points to sample=M3N-6, M >> 10 
– Packages: Amber, GROMACS, GAMESS, LAMMPS, 

NAMD
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AMBER Performance Analysis

ORNL Computational biologists were using 
AMBER for their simulations, but its scalability 
was limited to about 128 processors
Used several tools to study AMBER’s
performance

– MPIP, PAPI, Xprofiler, GPROF

Modified communication operations to improve 
scaling
Identified computational kernels for acceleration 
with FPGAs
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AMBER Profiling on Cray XT3 and IBM 
BlueGene/L

RUB (BGL)
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collect times
Computation and 
communication times can
improve with tool chain
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Short_ene: mapped to FPGA
Divided and distributed in MPI model

RunMD

Force Shake Update CRD distribute

Non-bond Bond FRC Collect

Generalized Born

GB Computation GB Communication

Amber Control Flow for RUB
(RuBisCO with Generalized Born method)

Main method of Sander

Most expensive on a single node system

Cost increases with 
number of processors 

http://images.google.com/imgres?imgurl=http://www-user.rhrk.uni-kl.de/~alles/fpga/fpga-layout.jpg&imgrefurl=http://www-user.rhrk.uni-kl.de/~alles/fpga/&h=756&w=758&sz=297&tbnid=a3VNUFKMFJQJ:&tbnh=139&tbnw=140&hl=en&start=10&prev=/images%3Fq%3Dfpga%2Bphoto%26hl%3Den%26lr%3D%26sa%3DN
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RUB Scaling

Rubisco with Generalized Born solvation method (ORNLtest3). Note that on BGL only results 
from 64, 128, 256, 512 nodes run are shown.
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AMBER Summary

Through performance analysis, we have 
identified the components that are limiting the 
scalability, and improved its scaling
Amber scaling was limited to 128 nodes but 
now we have run experiments on 1024 nodes 
on Bluegene/L and on 2048 nodes on Cray XT3
Achieved close to order of a nano-second/day on 
early evaluation stage supercomputing systems 
Mapping compute intensive kernel to SRC 
MapStation (a reconfigurable computing system)



Scalable Techniques for 
Performance Analysis, 

Evaluation, and Modeling
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sPPM Across Architectures

We need more detailed information at scale
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Traditional Performance Analysis of 
Communication Operations

MPI’s profiling layer promotes construction and portability of tools
Many MPI tools use tracing

– Produces very detailed information about communication activity 
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Timeline with 1024 tasks

How will this work for 64x or 128x??How will this work for 64x or 128x??

Is this application executing efficiently?Is this application executing efficiently?
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Scalability of Tools is Critical!

Several levels of performance analysis technology do not scale well

Concurrency O(100) O(1,000) O(10,000) O(100,000)

Instrumentation OK OK OK OK

Instrumentation 
management OK Hurdle Hurdle

/Barrier Barrier

Data management OK Hurdle Hurdle
/Barrier Barrier

Data interpretation Hurdle Barrier Barrier Barrier



31SciDAC Conf - Vetter

Scalable Tool Instrumentation with MRNet

Tool Front End

d0 d1 d2 d3

a0 a1 a2 a3

dP-4 dP-3 dP-2 dP-1

aP-4 aP-3 aP-2 aP-1

Tool 
Daemons

App 
Processes

Multicast/ 
Reduction 
Network

Internal Process

Filter

Currently scales to over 1000… Work by Philip Roth.
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Multivariate Statistical Analysis 
of Hardware Counter Data

Hardware counters produce huge 
amounts of data on large systems
Multivariate statistical techniques help 
distill important features
Clustering, Factor analysis, PCA
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Joint work with Dong Ahn @ LLNL.
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Automatic Classification for 
MPI Trace Analysis

Use decision tree classification (a supervised learning technique) to classify 
application’s messages automatically
Compare an application’s message operations to ‘normal’ communication for a 
particular MPI configuration

Classification Phase

Modeling Phase

MPI
Benchmarks Execution Performance

Trace Data

DTC
Training

DTC
Rules

Verification

MPI
Application Execution Performance

Trace Data
DTC

Classification

Performance Analysis

Modeling Phase (once)
–Use benchmarks to generate 
decision tree
–Both efficient and inefficient

Classification Phase (many)
–Execute application
–Analyze application trace with 
classifier based on decision tree
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Performance Engineering with Performance 
Assertions and Models

Use performance assertions to verify the performance explicitly

Expression
– "$nFlops", PA_AEQ, "11 * %g * %g", &ym, &xm
– Empirically measure number of floating point operations with instrumentation
– Test approximate equality (±10%) to ’11 * ym * xm’ ?

Empirical measurements verify performance model

 1:   pa_start(&pa, "$nFlops", PA_AEQ, "11 * %g * %g", &ym, &xm); 
 2:   for (j=ys; j<ys+ym; j++) { 
 3:     for (i=xs; i<xs+xm; i++) { 
 4:       if (i == 0 || j == 0 || i == Mx-1 || j == My-1) { 
 5:         f[j][i] = x[j][i]; 
 6:       } else { 
 7:         u       = x[j][i]; 
 8:         uxx     = (two*u - x[j][i-1] - x[j][i+1])*hydhx; 
 9:         uyy     = (two*u - x[j-1][i] - x[j+1][i])*hxdhy; 
10:         f[j][i] = uxx + uyy - sc*PetscExpScalar(u); 
11:       } 
12:     } 
13:   } 
14:   pa_end(pa); 
15:   PetscLogFlops(11*ym*xm); 

 

Joint work with Pat Worley.



Aggressively Evaluate New 
Technologies
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Recent and Ongoing Evaluations
Cray X1

– P.A. Agarwal, R.A. Alexander et al., “Cray X1 Evaluation Status Report,”
ORNL, Oak Ridge, TN, Technical Report ORNL/TM-2004/13, 2004.

– T.H. Dunigan, Jr., M.R. Fahey et al., “Early Evaluation of the Cray X1,” Proc. 
ACM/IEEE Conference High Performance Networking and Computing (SC03), 
2003.

– T.H. Dunigan, Jr., J.S. Vetter et al., “Performance Evaluation of the Cray X1 
Distributed Shared Memory Architecture,” IEEE Micro, 25(1):30-40, 2005.

SGI Altix
– T.H. Dunigan, Jr., J.S. Vetter, and P.H. Worley, “Performance Evaluation of the 

SGI Altix 3700,” Proc. International Conf. Parallel Processing (ICPP), 2005.
Cray XD1

– M.R. Fahey, S.R. Alam et al., “Early Evaluation of the Cray XD1,” Proc. Cray 
User Group Meeting, 2005, pp. 12.

SRC Mapstation
– M.C. Smith, J.S. Vetter, and X. Liang, “Accelerating Scientific Applications 

with the SRC-6 Reconfigurable Computer: Methodologies and Analysis,” Proc. 
Reconfigurable Architectures Workshop (RAW), 2005.

Underway
– XD1 FPGAs
– ClearSpeed
– EnLight
– Multicore processors
– IBM BlueGene/L
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Summary

Performance analysis, evaluation, and modeling will 
become increasingly challenging over the next decade 
due to uncertainty from several factors

– Scale
– Architecture complexity
– Application complexity

We must embrace the uncertainty by
– Understanding our applications and architectures in detail with 

empirical measurement, models
– Working with apps teams to adapt to new technology
– Developing performance engineering techniques that provide 

insight
– Aggressively evaluating new technologies
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