
1

Performance Analysis of GYRO
A Tool Evaluation

P Worley, P Roth Oak Ridge National Laboratory
J Candy General Atomics
H Shan Lawrence Berkeley National Laboratory
G Mahinthakumar, S Sreepathi North Carolina State University
L Carrington, T Kaiser, A Snavely San Diego Supercomputing Center
D Reed, Y Zhang University of North Carolina
K Huck, A Malony, S Shende University of Oregon
S Moore, F Wolf University of Tennessee

2005 SciDAC Conference
June 26-30, 2005

San Francisco, California

2

This research was sponsored by the Office of Mathematical, Information, and Computational
Sciences, Office of Science, U.S. Department of Energy under Contract No. DE-FG03-95ER54309
with General Atomics, No. DE-FC02-04ER25612 with the University of North Carolina, No. DE-
AC03-76SF00098 and No. DE-FC02-01ER25491 with the University of California, No. DE-FG02-
05ER23680 and No. DE-FG03-01ER25501 with the University of Oregon, No. DE-FC02-
01ER25490 with the University of Tennessee, and No. DE-AC05-00OR22725 with UT-Battelle,
LLC. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or
reproduce the published form of this contribution, or allow others to do so, for U.S. Government
purposes.

Acknowledgements

3

• Performance analysis and optimization are not trivial, and are only getting harder as application
codes become more complex, as the problem sizes and number of processors used increase, as
processor, memory, and network technologies evolve, etc.

• Performance tools have a reputation for being difficult to learn to use, especially for the infrequent
user. However, this must be compared with the difficulty and limitations of the alternative: manual
methods.

• This study looks at what performance analyses can be performed without modern tools, and at what
cost. We then briefly describe a number of tools that address some of the deficiencies of the manual
approach.

Problem

4

The performance of the Eulerian gyrokinetic-Maxwell solver code GYRO was examined on five high
performance computing systems:
• Cray X1 at Oak Ridge National Laboratory (ORNL): 128 4-processor X1 SMP nodes and a Cray

interconnect. Each processor is a Multi-Streaming Processor (MSP) comprised of 8 32-stage vector
units running at 800 MHz and 4 scalar units running at 400 MHz.

• IBM p690 cluster at ORNL: 27 32-processor p690 SMP nodes and an HPS interconnect. Each node
has two 2-link network adapters. Each processor is a 1.3 GHz POWER4.

• IBM SP at the National Energy Research Scientific Computing Center (NERSC): 416 16-processor
Nighthawk II SMP nodes and an SP Switch2 interconnect. Each node has two network adapter
cards. Each processor is a 375 MHz POWER3-II.

• SGI Altix at ORNL: 128 2-processor SMP nodes and a NUMAlink interconnect. Each processor is
a 1.5 GHz Intel Itanium 2. The Altix is a Non-Uniform Memory Access (NUMA) cache coherent
shared memory system.

• TeraGrid Linux cluster at the National Center for Supercomputing Applications (NCSA):} 631 2-
processor SMP nodes and a Myrinet 2000 interconnect. Each processor is a 1.5 GHz Itanium 2.

using the Waltz standard case benchmark, which we refer to as B1-std. The B1-std grid is
16 x 140 x 8 x 8 x 20, which is the same resolution used in many production runs. The benchmark is run
for 500 timesteps.

Approach

5

First, a manual “baseline” approach was taken, using custom PERL and GNUPLOT scripts to analyze the
output of:
• wallclock timers. GYRO comes with embedded wallclock timers and both cumulative and sampled

runtime data are collected automatically. The timers surround events that characterize the developers'
view of the code.

• floating point operation counts. We instrumented the code with calls to HPMLIB f_hpmstart and
f_hpmstop routines at the same locations as the embedded timers. Runs on the p690 cluster were used
to collect floating point operation counts for each user event for a number of different processor
counts. These data were combined with timing data to determine computational rates and to examine
operation count scaling.

• event traces. We instrumented the code with calls to the MPICL traceevent routine at the same
locations as the embedded timers. Runs on the X1 and the p690 cluster were used to collect trace data
for both MPI calls and the user-defined events that were used to determine event-specific
communication overhead. Visualizations using ParaGraph were used to look for performance
bottlenecks.

After the baseline studies were complete, we next analyzed the performance of GYRO using a number of
tools developed by or used within the Performance Evaluation Research Center (PERC) project:
PerfDMF, IPM, TAU, SvPablo, KOJAK, PMaC, identifying ways in which the tools simplified,
accelerated or extended the manual approach.

Experimental Design

6

• Optimization over small search spaces. Many
codes have embedded tuning options that allow the
algorithms or implementation to be modified at
compile- or runtime. The optimal choice is often a
function of the computer system, problem
specification, or runtime configuration (e.g., number
of processors). If the search space is small, it is
simplest to determine the optimum by measuring the
performance of each option directly. Example here
is the choice of nonlinear evaluation method to use
in GYRO and the choice of filesystem to run out of
on the ORNL Cray X1.

• Benchmarking. Benchmark timings should
represent what would be observed in a production
run, i.e., without performance tools.

While both of these analyses require only whole program
timings, to observe scaling behavior requires many runs.
For these analyses over 175 experiments were run, on
processor counts up to 1024, and the number of
experiments on any given system was constrained by
resource availability. We were not able to collect all of
the data that we would have liked on any of the target
systems.

Analyses for which tools are not needed

7

• User Event Profiling. Profiling is a standard first
step in performance analysis, to determine which
events are most important to optimize. Examining
scaling as well can help identify performance
problems. From the benchmark experiments, Altix
performance is not scaling as well as on the other
platforms. A plot of the percentage of runtime per
phase on the Altix indicates that the Coll_tr phase
(dominated by calls to MPI_Alltoall) is the probable
source of the poor scaling. As the timer data plotted
here is for process 0 only, this could also denote a
load imbalance. However, the other systems do not
show similar catastrophic communication
performance. Note that the embedded timers define
the events that the developer expects to characterize
performance. An incorrect choice can provide
misleading information, and a good choice on one
platform may not be a good choice on another.

Analyses for which tools are not necessary

8

• Computational cost and rate metrics. Operation
counts can be used to understand computational
complexity and to compute computation rates.
Aggregating the floating point operation counts on
the p690 cluster illustrates that the work required by
the parallel implementation of GYRO is sensitive to
the processor count, and that some scaling issues are
unavoidable (when using this implementation). Using
the operation counts to approximate computational
rates indicates that rates on all systems are relatively
insensitive to processor count (not shown here). The
average rates are listed in the table. From these data,
the Coll phase is a candidate for additional
vectorization work on the X1, and the difference
between computational rates on the Altix and
TeraGrid, which use the same processor, need to be
looked at more closely. Note that the operation counts
were collected in separate experiments, and on only
one platform, and combined with the timing data in a
postprocessing step. While sufficient here, other
analyses would requiring collecting operation counts
on each system.

Analyses for which tools are not necessary

9

• Communication cost and rate metrics. MPI
command profiles and traces can be used to
understand communication complexity and to
compute communication rates. Example data are not
shown here, but the advantages, costs, and drawbacks
are similar to those for collecting data on operation
counts, excepting that trace data is much higher
volume. For example, in these (limited) studies we
collected over 700MB of trace data (compressed).

• Visualization. MPI-aware performance visualization
tools have been around for over 10 years. We include
one of the original ones, ParaGraph, in the baseline
studies to help identify whether more modern tools
have improved on this basic functionality. The
combination of the utilization graph and the task
Gannt chart indicate that load imbalance contributes
to some of the communication overhead, but is not
the dominant source. These data are for 192
processors on the X1, so do not necessarily indicate
anything about performance on, for example, the
Altix.

It is in the collection, analysis, and presentation of
multiple related measurements where manual methods
become onerous, especially when requiring frequent
additional experiments to fill “holes” in the
experimental database.

Analyses for which tools are not necessary

10

There are a number of analyses where the manual approach we took was either too expensive or was only able to
approximate the analysis indirectly, including:

• Identifying critical paths. Critical paths indicate potential performance bottlenecks. Trace analyzers provide one
approach to this, but are best linked to more than just timing data to provide context and guidance.

• Global view analysis. Global view analysis allows direct examination of load imbalances, system bottlenecks, and
the impact of system noise. While user and MPI event visualizations are useful, they require the user to recognize and
interpret the data correctly.

• Detailed performance debugging. Debugging is an iterative process of identifying and tracking performance
problems down to individual routines and lines of code. When performed by hand, detailed performance debugging is
time consuming and fraught with problems due to instrumentation perturbation and global effects (e.g., load
imbalances) masquerading as local performance problems.

Analyses for which tools are important

11

Automatic collection of
performance
data

•Selection of the best version

•Refinement of existing
optimization strategies

•Creation of new
optimization strategies

•Scalability analysis

PerfDMF
Unified

performance
data model

EXPERT
Profile

Operations to
compare, integrate,

and summarize
different experiments

Dynaprof
Profile

TAU
Profile

SvPablo
Profile

CONE
Profile

Event
trace

Automatic
transformation

of event
traces into
high-level

profile

SvPabloCUBE ParaProf Vampir

Visualization & analysis

Multiple
code

versions

Feedback

12

PerfDMF
PerfDMF (Performance Data Management Framework)
is a database schema and toolkit layered on top of an SQL
database for organizing multi-experiment profile data.
A data mining framework called PerfExplorer is also built on
top of PerfDMF. Loading the manually collected baseline
data into PerfDMF facilitates subsequent multi-experiment
analyses. For example, the PerfExplorer user interface was
used to quickly and easily generate all of the manually-
generated plots described previously. It was also used to
examine other performance issues, .e.g, (1) relative efficiency
for different simulation timesteps, (2) relative efficiency for
different user events, and (3) relative efficiency for a
communication event for different platforms.

13

IPM
IPM (Integrated Performance Monitor) is a lightweight
profiling tool for parallel applications, automatically
reporting runtime, communication time, computation rate,
and memory requirements, both aggregate and per process, as
well as detailed profile data on MPI routine calls and data
from system-supported hardware performance counters.
Running IPM does not require any source code modification
unless the user wants to define special regions to monitor, in
which case MPI_Pcontrol is used to define the starting and
ending points of the region. While this is the same
requirement as the manual approaches described previously,
IPM automatically collects multiple metrics and plots both
raw and derived metrics. The examples here show (1)
percentage of maximum computational rate as a function of
processor, (2) percentage of communication time spent in
each MPI command, and (3) percentage of total time spent in
various phases as a function of processor count. While not
designed for multi-experiment analyses, IPM quickly
generates a number of common views of performance for a
given run.

14

SvPablo – a Graphical Performance Analysis Environment

Automatic
instrumentation

Performance
data correlating to

source code

Software &
hardware
statistics

Load imbalance
detection

Line level
scalability

analysis

Easy
bottleneck
discovery

15

SvPablo
SvPablo is a graphical environment for
instrumenting application source code and
browsing dynamic performance data.
It is a sophisticated tool supporting many
performance analyses that are difficult to do
manually. For example, SvPablo can calculate
computation and communication rates while
collecting profile data, not requiring the merge
and postprocessing of multiple experiments or

of trace data. The examples here show the
output of a performance debugging session,
attempting to identify and characterize the
performance of performance sensitive routines
for further investigation, and analyses of multi-
experiment results at a subroutine and at a loop
level.

16

TAU
TAU (Tuning and Analysis Utilities) is
a framework and toolkit for
performance instrumentation,
measurement, and analysis of parallel

applications. Like SvPablo, TAU is a
sophisticated tool supporting many
performance analyses that are difficult
to do manually. PerfDMF is also a
component of TAU, and TAU analysis
routines can be used to analyze data
collected with other tools. The first
example here is another performance
debugging application, identifying
where time is spent in the code. The
second example is a view of the
imbalance in the time spent in the
MPI_Alltoall, representing either
computational load imbalances or
hotspots in the communication logic or
network. While this latter task could be
achieved by a manual analysis of a
trace file, TAU supports many
common analyses and a mechanism for
defining and saving custom analyses.

17

KOJAK
KOJAK is an automatic trace-analysis toolkit for parallel
applications using MPI and/or OpenMP, generating event
traces during execution and searching them offline for
execution patterns indicating inefficient performance
behavior. By comparing event traces for different runs,
KOJAK identified particular MPI_AlltoAll calls as
the location of the Altix performance problem, though it
has not yet led to a resolution. Comparative analysis of
trace files is clearly not a manual activity.

18

PMaC

0

1

2

3

4
 case1

 case2

 case3

 case4

 case5

 case6

 case7a

 case7b

 case8a

 case8b

Gyro 2x

sensitivity

Gyro 4x

sensitivity

PMaC (Performance Modeling and Characterization) is a
suite of tools for characterizing system and application
performance and for using these characterizations to build
performance models suitable for performance optimization
and extrapolation. The performance questions mentioned
previously were all concerned with understanding and
optimizing current performance. Another class
of questions include (1) estimating performance when
changing the problem size, number of processors, or moving
to a different system and (2) finding the optimal tuning
parameters within a large search space. Both of these
questions can be addressed by performance models,
i.e., parameterized representations of application runtime.
Depending on the form of the model, it may be easily
manipulated ``manually''. The difficulty with the model is its
generation. There are a number of modeling methodologies
described in the literature, including the PMaC tools and
methodology examined in these studies. Here PMaC is used
to examine the performance impact of changing a number of
different machine characteristics, relative to performance on
16 processors of the IBM p655+ cluster at NAVO. From
these results the code is having difficulty staying within the
mid-tier (L2) and outer-tier (L3) cache, as it greatly benefits
from L3 and MM BW increases.

19

Conclusions
This study indicates that there are a number of common performance analyses for which sophisticated performance
tools are not necessary. However, many of these analyses are expensive, in both system resources and labor, and a
number of useful analyses are simply not practical to perform manually, thus requiring tool support. There is a
tradeoff between tool functionality and usability. Tools such as KOJAK, SvPablo, and TAU require considerable
effort to install and set up for use with an application in order to collect the desired performance metrics at an
appropriate level of granularity. Similarly, while models are wonderful tools that a developer could use for many
activities, generating the model is something few people are willing to do, and efficient ways of updating and
maintaining models are still open questions. In conclusion, there is still more to do in performance tool development,
but tools make performance analysis and optimization feasible in instances when it would not be otherwise,
especially when running with many processors and working with complex applications.

20

References
B1-std. R. Waltz, G. Kerbel, and J. Milovich. Toroidal gyro-landau fluid model turbulene simulations in a nonlinear

ballooning mode representation with radial modes, Phys. Plasmas, 1 (1994), p. 2229.

GYRO. J. Candy and R. Waltz, An eulerian gyrokinetic-maxwell solver, J. Comput. Phys., 186 (2003), p. 545.

HPM. http://www.research.ibm.com/actc/projects/hardwareperf.shtml .

IPM. http://www.nersc.gov/nusers/resources/SP/ipm/ .

KOJAK. http://icl.cs.utk.edu/kojak/ .

MPICL. http://www.csm.ornl.gov/picl/ .

ORNL Computer Systems. http://www.ccs.ornl.gov/ .

NCSA Computer Systems. http://www.necsa.gov/ .

NERSC Computer Systems. http://www.nersc.gov/ .

ParaGraph. M. T. Heath and J. A. Etheridge, Visualizing the performance of parallel programs, IEEE Software, 8

(1991), pp. 29-39.

PERC. http://perc.nersc.org/ .

PMaC. http://www.sdsc.edu/PMaC/ .

SvPablo. Pablo Research Projects. http://www.renci.unc.edu/Project/ResearchProjects.htm

TAU. http://www.cs.uoregon/reseach/paracomp/tau/tautools/ .

