
Erik Lindahl
erik.lindahl@scilifelab.se

 Molecular Simulation in
the Exascale Era

Acceleration, Task Parallelism & Ensemble Simulations

mailto:lindahl@cbr.su.se?subject=

Molecular simulations

Simulations

Extreme detail

Sampling issues?

Parameter quality?

Experiments

Efficient averaging

Less detail

Chemistry
s -3 0-6-15 -12 -9 310 10 10 10 10 10 10s s s s s s

Where we

want to be

BiologyPhysics

Where we

need to be

Where we are

V (r)=
Â

bonds

1

2

k

b

i j

�
r

i j

� r

0

i j

�
2

+
Â

angles

1

2

k

q

i jk

�
q

i jk

�q

0

i jk

�
2

+
Â

torsions

(

Â

n

k

q

[1+ cos(nf�f

0

)]

)

+
Â

impropers

k

x

�
x

i jkl

�x

0

i jkl

�

+
Â

i, j

q

i

q

j

4pe

0

r

i j

+
Â

i, j

"
C

12

r

12

i j

�C

6

r

6

i j

#

V (r)=
Â

bonds

1

2

k

b

i j

�
r

i j

� r

0

i j

�
2

+
Â

angles

1

2

k

q

i jk

�
q

i jk

�q

0

i jk

�
2

+
Â

torsions

(

Â

n

k

q

[1+ cos(nf�f

0

)]

)

+
Â

impropers

k

x

�
x

i jkl

�x

0

i jkl

�

+
Â

i, j

q

i

q

j

4pe

0

r

i j

+
Â

i, j

"
C

12

r

12

i j

�C

6

r

6

i j

#

mi
∂2ri

∂t2 = Fi i = 1..N

Fi =�
∂V (r)

∂ri

“One small step for man, 
many small steps for a computer”

The challenge:
• 100,000 atoms
• Each has 500 neighbors
• 50M interactions/step
• 2B FP operations
• ~1ms real time per step

1 interaction

We’re on the μs scale today  
(for small systems)

Larger machines
have enabled larger
systems, not longer

simulations!

• Simulation hardware project  
in Groningen, 1995, turned into software

• High performance: SIMD assembly kernels: ia32,
x86-64, ia64, Altivec/VMX, BlueGene, ARM, VSX,
AVX2, AVX-512, HPC-ACE

• Portable. Runs everywhere
• Scaling. Efficient use of >100k cores
• Flexibility: Advanced free energy & ensemble

simulation techniques
• Open innovation arena: State-of-the-art contributions

from all over the world. OK to use commercially.

GROMACS: 
Open Science

How do we get to ms range?
With a time step of 5fs...

... you need 200 billion iterations to reach  
1000 μs of simulated time

Let’s spend 100 days

...each iteration must complete in 43.2 (wallclock) μs!

For 10 μs per day…

Heterogeneous Acceleration
in Molecular Dynamics

and Other HPC Applications

Programming model

CPU
(PME)

GPU

N OpenMP
threads

1 MPI rank 1 MPI rank 1 MPI rank1 MPI rank

N OpenMP
threads

N OpenMP
threads

N OpenMP
threads

1 GPU
context

1 GPU
context

1 GPU
context

1 GPU
context

Domain decomposition
dynamic load balancing

Load balancingLoad balancing

Heterogeneous acceleration in GROMACS

Heterogeneous acceleration
Latency limited parts

Throughput limited parts

~700GB/s memory bandwidth
10+ TFLOP/chip

New interconnects CPU-GPU:
80GB/s CPU-GPU bandwidth
10x lower latency than PCIe

{ {
25-50 μs

Heterogeneous CPU-GPU acceleration

Wallclock time for a step:
~50μs ms if we want to 
simulate 10μs/day

From neighborlists to cluster
proximity lists

X X X X
X X X X
X X X X
X X X X

Organize  
as tiles with

all-vs-all
interactions:

x,y,z
gridding

x,y grid
z sort
z bin

Cluster pairlist

From verlet to cluster pair lists

12 13 14 15111098

1111

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0000

8653 9 10 11 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0000

7654 12 13 14 15

222

3333

2

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

11110000

222 33332

0
1
2
3

4
5
6
7

8
9
10
11

Classical 1x1 neighborlist on 4-way SIMD

4x4 setup on 4-way SIMD

4x4 setup on 8-way SIMD

4x4 setup on SIMT-16

141312 1515141312654 77654

Unified GPU/CPU
architecture -
completely portable
CUDA
OpenCL
Intel MIC
x86 SSE2
x86 SSE4.1
x86 AVX
x86 AVX2
x86 AVX-512
Arm Neon
Arm64 Asimd
IBM QPX
IBM VMX
IBM VSX
Fujitsu HPC-ACE
Wanted: Fujitsu HPC-ACE2

1.5 3 6 12 24 48 96 192 384 768 1536 3072
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
C2070

GTX 580

Quadro K5000

GTX 680

TITAN

K20c – 705 MHz

K20c – 758 MHz

K40c – 745 MHz

K40c – 875 MHz

system size (x1000 atoms)

ke
rn

e
l

ti
m

e
 (

m
s)

Kernel execution timing
We are starting to use a
lot of integer ops too
for pruning & tweaking

Single exec per  
step for 1 GPU

1.5 3 6 12 24 48 96 192 384 768 1536 3072
0

10

20

30

40

50

60

70

80
K20c 758 MHz
K40c 875 MHz
GTX 980
GTX 780Ti
GTX TITAN
Quadro M600

system size (1000's of atoms)

ke
rn

el
 ti

m
e/

10
00

 a
to

m
s

(μ
s/

ite
ra

tio
n)

up to 40%
faster than the
GTX TITAN

0

1.5 3 6 12 24 48 96 192 384 768 1536 3072
0

10

20

30

40

50

60

70

80
K20c 758 MHz
K40c 875 MHz
GTX 980
GTX 780Ti
GTX TITAN
Quadro M600

system size (1000's of atoms)

ke
rn

el
 ti

m
e/

10
00

 a
to

m
s

(μ
s/

ite
ra

tio
n)

up to 40%
faster than the
GTX TITAN

0

A lot of low-level tuning
GPU SMX scheduling/balancing

60μs actual time (1500 atoms)

If we solve all latency bottlenecks, 
we would be below 20μs

Voltage-sensor domain
embedded in POPC lipids
and water: 47,000 atoms

Desktop example: Core i7 4790K & GTX Titan

Surprisingly little CUDA code

A total of ~3500 lines
of CUDA, compared
to 3 million lines of
C/C++

1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

16

17

18
19
21
22

23

20

24

25

26
27
29

30

31

28 36 44 52 60

32 40 48 56 64

33

34
35
37
38

39

41

42
43
45
46

47

49

50
51

53

54

55

57

58

59

61

62

63

Re
ci

pr
oc

al
 sp

ac
e

D
ire

ct
 sp

ac
e

Strong scaling:
40-50 atoms/core
for small systems

~1000 atoms/GPU

Why are we still 
using general-purpose

CPUs?

• Δt limited by fast motions -
1fs
• Remove bond vibrations

• SHAKE (iterative, slow) - 2fs
• Problematic in parallel (won’t work)
• Compromise: constrain h-bonds only -

1.4fs

• GROMACS (LINCS):
• LINear Constraint Solver
• Approximate matrix inversion

expansion
• Fast & stable - much better than

SHAKE
• Non-iterative

t=1

t=2’

t=1

t=2’’

LINCS:

t=1

t=2

A) Move w/o constraint

B) Project out motion
along bonds

C) Correct for rotational
extension of bond

CPU trick 1: all-bond constraints

• Next fastest motions is H-angle
and rotations of CH3/NH2 groups

• Try to remove them:
• Ideal H position from heavy atoms.
• CH3/NH2 groups are made rigid
• Calculate forces, then project back onto heavy

atoms
• Integrate only heavy atom positions, reconstruct

H’s

• Enables 5fs timesteps!
| |

3fd

| || |1-a a

b

a

1-a

a

2 3fad 3out 4fd

cb

3

θ

d

CPU trick 2: Virtual

Interactions Degrees of Freedom

3

rc rc
1
2
rc

(a) (b) (c)

FIG. 1: Communication patterns for the (a) half shell, (b) eighth shell and (c) midpoint methods illustrated for 2D domain
decomposition. rc is the cut-o� radius. The lines with circles show examples of pair interactions that are assigned to the
processor of the central cell. For (a) and (b) the assignment is based on the endpoints of the line, for (c) on the midpoint.

0

5

1

6

7

3

4

rc

FIG. 2: The domain decomposition cells (1-7) that communi-
cate coordinates to cell 0. Cell 2 is hidden below cell 7. The
zones that need to be communicated to cell 0 are dashed, rc

is the cut-o� radius.

are calculated.
Bonded interactions are distributed over the processors

by finding the smallest x, y and z coordinate of the charge
groups involved and assigning the interaction to the pro-

cessor with the home cell where these smallest coordi-
nates reside. This procedure works as long as the largest
distance between charge groups involved in bonded inter-
actions is not larger than the cut-o� radius. To check if
this is the case, we count the number of assigned bonded
interactions during domain decomposition and compare
it to the total number of bonded interactions in the sys-
tem.

For full dynamic load balancing the boundaries be-
tween the cells need to move during the simulation. For
1D domain decomposition this is trivial, but for a 3D
decomposition the cell boundaries in the last two dimen-
sions need to be staggered along the first dimensions to
allow for complete load balancing (we will go into the
details of the load balancing later). Fig. ?? shows the
communicated zones for 2D domain decomposition in the
most general case, namely a triclinic unit cell with dy-
namic load balancing. Zones A, B and C indicate the
parts of cells 1, 2 and 3 respectively that are within the
cut-o� radius rc of home cell 0. Without dynamic load
balancing this would be all that would need to be com-
municated to the processor of cell 0. With dynamic load
balancing the staggering can lead to an extra volume C’
in cell 3 that needs to be communicated, due to the non-
bonded interactions between cells 1 and 3 that must be
calculated on the processor of cell 0. For bonded interac-
tions zones A and B might also need to be expanded. To

8th-sphere

4

0

C B

B’

A’

cr

A

1

3 2C’

FIG. 3: The zones to communicate to the processor of cell 0,
see the text for details.

ensure that all bonded interaction between charge groups
can be assigned to a processor, it is su⌅cient to ensure
that the charge groups within a sphere of radius rc are
present on at least one processor for every possible cen-
ter of the sphere. In Fig. ?? this means we also need to
communicate volumes B’ and C’. When no bonded inter-
actions are present between charge groups, these volumes
are not communicated. For 2D decomposition A’, B’ and
C’ are the only extra volumes that need to be considered.
For 3D domain decomposition the pictures becomes quite
a bit more complicated, but the procedure is analogous
apart from more extensive book-keeping. All three cases
have been fully implemented for general triclinic cells.

The communication of the coordinates and charge
group indices can be performed e⌅ciently by ’pulsing’ the
information in one direction simultaneously for all cells.
This needs to be repeated for each dimension. Consider
a 3D domain decomposition where we decompose in the
order x, y, z; meaning that the x boundaries are aligned,
the y boundaries are staggered in along the x direction
and the z boundaries are staggered along the x and y
directions. Each processor first sends the zone that its
neighboring cell in -z needs to this cell. Now each pro-
cessor can send the zone it neighboring cell in -y needs,
plus the part of the zone it received from +z, that is also
required by the neighbor in -y. The last step consists
of a pulse in -x where (parts of) 4 zones are sent over.
In this way on 3 communication steps are required to
communicate with 7 processors, while no information is
sent over that is not directly required by the neighbor-
ing processor. The communication of the forces happens
according to the same procedure, but in reversed order
and direction.

Another example of a minor complication in the com-

munication is virtual interaction sites constructed from
atoms in other charge groups. This is used in some poly-
mer (anisotropic united atom) force fields, but GRO-
MACS can also employ virtual sites to entirely remove
hydrogen vibrations and construct the hydrogens in their
equilibrium positions from neighboring heavy atoms each
timestep. Since the constructing atoms are not necessar-
ily interacting on the same node, we have to track the
virtual site coordinate dependencies separately to make
sure they are both available for construction and that
forces are properly communicated back.

III. DYNAMIC LOAD BALANCING

Calculating the forces is by far the most time consum-
ing part in MD simulations. In GROMACS, the force
calculation is preceded by the coordinate communication
and followed by the force communication. We can there-
fore balance the load by determining the time spent in the
force routines on each processor and then adjusting the
volume of every cell in the appropriate direction. The
timings are determined using inline assembly hardware
cycle counters and supported for virtually all modern
processor architectures. For a 3D decomposition with or-
der x, y, z the load balancing algorithm works as follows:
First the timings are accumulated in the z direction to
the processor of cell z=0, independently for each x and y
row. The processor of z=0 sums these timings and sends
the sum to the processor of y=0. This processor sums the
timings again and send the sum to the processor of x=0.
This processor can now shift the x boundaries and send
these to the y=0 processors. They can then determine
the y boundaries, send the x and y boundaries to the
z=0 processors, which can then determine z boundaries
and send all boundaries to the processors along their z
row. With this procedure only the necessary information
is sent to the processors that need it and global commu-
nication is avoided.

As mentioned in the introduction, load imbalance can
come from several sources. One needs to move bound-
aries in a conservative fashion in order to avoid oscil-
lations and instabilities, which could for instance occur
due to statistical fluctuations in the number of particles
in small cells. We found that scaling the relative lengths
of the cells in each dimension with 0.5 times the load
imbalance, with a maximum scaling of 5% produced ef-
ficient and stable load balancing. Of course, with our
current decision to only communicate to nearest neigh-
bors one has to make sure that cells do not get smaller
than the cut-o� radius in any dimension, but when/if this
becomes a bottleneck it is straightforward to add another
step of communication. For a large numbers of cells or
inhomogeneous systems two more checks are required. A
first restriction is that boundaries should not move more
than halfway an adjacent cell (where instead of halfway
one could also choose a di�erent value). This prevents
cells from moving so far that a charge group would move

Load balancing works
for arbitrary triclinic cells

CPU trick 3: Non-rectangular
cells & decomposition

Lysozyme, 25k atoms
Rhombic dodecahedron
(36k atoms in cubic cell)

How do we create efficient libraries?

2010: ~300,000 cores

2014: ~3M cores
2012: ~1M cores

2016: ~10M cores
2018: ~30M cores

2020: ~100M cores
2022: ~300M cores

~2024: 1B ‘cores’

We keep scaling “up” (larger systems) where we should
scale “down” (fine-grained parallelism, ensembles)!

How will YOU
use a billion

cores?

Piz Daint, CSCS
2017 Pascal P100 upgrade:
4500 processors,
3840 cores each:
17,280,000 cores

From ~100k cores
to Exascale: Ensembles

SI
M

D
SI

M
D

SI
M

D
SI

M
D

SI
M

D
SI

M
D

SI
M

D
SI

M
D

SI
M

D
SI

M
D

SI
M

D
SI

M
D

Thread Thread Thread

MPI MPI MPI

Worker WorkerWorker

Server

IB

SSL

Shared
memory

Average: 0.04MB/s
Peak: 100MB/s

Latency: 10 ms

Average: 0.5GB/s
Peak: >2.7GB/s

Latency: 1-10 s

Average: 0.5GB/s
Peak: 25GB/s

Latency: <100ns

Server

ServerServer

Latency: >100ms

Cluster

Markov State Models

Swarms / Transition pathways

Milestoning

Monte Carlo Sampling
Free Energies

Metadynamics

Biophysics/ion
channels:

Samuel Murail
Torben Brömstrup

Özge Yoluk
Iman Pouya

Jens Carlsson
Sophie Schwaiger

Göran Klement

Method Development:
Mark Abraham
Szilárd Páll
Berk Hess
Sander Pronk
Viveca Lindahl
Petter Johansson
Grant Rotskoff
Anders Gabrielsson
Christian Wennberg

