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Overview

• Both architectures and applications are growing more complex
– Trends dictate that this will get worse, not better

– This complexity creates irregularity in computation, communication, and data 
movement

• Programming models must provide performance portability in this 
environment

• Examples
– Heterogeneous computing

– Memory hierarchies
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Current ASCR Computing At a Glance

System attributes
NERSC

Now

OLCF

Now

ALCF 

Now
NERSC Upgrade OLCF Upgrade ALCF Upgrades

Planned Installation Edison TITAN MIRA
Cori

2016

Summit

2017-2018

Theta

2016

Aurora

2018-2019

System peak (PF) 2.6 27 10 > 30 150 >8.5 180 

Peak Power (MW) 2 9 4.8 < 3.7 10 1.7 13

Total system memory 357 TB 710TB 768TB

~1 PB DDR4 + High 

Bandwidth Memory 

(HBM)+1.5PB 

persistent memory 

> 1.74 PB DDR4 + 

HBM + 2.8 PB 

persistent memory

>480 TB DDR4 + 

High Bandwidth 

Memory (HBM)

> 7 PB High Bandwidth 

On-Package Memory 

Local Memory and 

Persistent Memory

Node performance (TF) 0.460 1.452 0.204 > 3 > 40 > 3 > 17 times Mira

Node processors
Intel Ivy 

Bridge 

AMD 

Opteron

Nvidia

Kepler  

64-bit 

PowerPC 

A2

Intel Knights Landing  

many core CPUs 

Intel Haswell CPU in 

data partition

Multiple IBM 

Power9 CPUs &

multiple Nvidia

Voltas GPUS

Intel Knights Landing 

Xeon Phi many core 

CPUs

Knights Hill Xeon Phi 

many core CPUs  

System size (nodes)
5,600 

nodes

18,688

nodes
49,152

9,300 nodes

1,900 nodes in data 

partition

~3,500 nodes >2,500 nodes >50,000 nodes

System Interconnect Aries Gemini 5D Torus Aries
Dual Rail 

EDR-IB
Aries

2nd Generation Intel 

Omni-Path Architecture

File System

7.6 PB

168 GB/s,

Lustre®

32 PB

1 TB/s,

Lustre®

26 PB

300 GB/s 

GPFS™

28 PB

744 GB/s 

Lustre®

120 PB

1 TB/s

GPFS™

10PB, 210 GB/s 

Lustre initial

150 PB

1 TB/s

Lustre®

Complexity α T
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• Accelerators and SoCs already dominate 
multiple markets

• Vendors, lacking Moore’s Law, will need to 
continue to offer new products (to stay in 
business)

– Grant that advantage of better CMOS process 
stalls

– Use the same transistors differently to 
enhance performance

• Architectural design will become extremely 
important, critical

– Address new parameters for benefits/curse of 
Moore’s Law

Architectural specialization will continue and accelerate

Delagi, ISSCC 2010
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• Cores
– CPU

– GPUs (discrete, integrated)

– FPGAs

– Special purpose engines

• RNGs

• AES, video engines

• Transactional memory

• Virtualization support

• SIMD/short vector

• SMT, threading models

• DVFS (incl Turboboost)

• etc

Specialization is here to stay: Core, Processor Architectures

http://www.techpowerup.com/img/15-08-18/77a.jpg

http://cdn.wccftech.com/wp-content/uploads/2014/03/NVIDIA-Pascal-GPU-Chip-

Module.jpg

Skylake

Pascal
http://www.wired.com/2016/05/google-tpu-custom-chips/

D.E. Shaw, M.M. Deneroff, R.O. Dror et al., “Anton, a special-purpose machine for molecular dynamics 

simulation,” Communications of the ACM, 51(7):91-7, 2008.

http://www.techpowerup.com/img/15-08-18/77a.jpg
http://cdn.wccftech.com/wp-content/uploads/2014/03/NVIDIA-Pascal-GPU-Chip-Module.jpg
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Recent news
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Current ASCR Computing At a Glance

System attributes
NERSC

Now

OLCF

Now

ALCF 

Now
NERSC Upgrade OLCF Upgrade ALCF Upgrades

Planned Installation Edison TITAN MIRA
Cori

2016

Summit

2017-2018

Theta

2016

Aurora

2018-2019

System peak (PF) 2.6 27 10 > 30 150 >8.5 180 

Peak Power (MW) 2 9 4.8 < 3.7 10 1.7 13

Total system memory 357 TB 710TB 768TB

~1 PB DDR4 + High 

Bandwidth Memory 

(HBM)+1.5PB 

persistent memory 

> 1.74 PB DDR4 + 

HBM + 2.8 PB 

persistent memory

>480 TB DDR4 + 

High Bandwidth 

Memory (HBM)

> 7 PB High Bandwidth 

On-Package Memory 

Local Memory and 

Persistent Memory

Node performance (TF) 0.460 1.452 0.204 > 3 > 40 > 3 > 17 times Mira

Node processors
Intel Ivy 

Bridge 

AMD 

Opteron

Nvidia

Kepler  

64-bit 

PowerPC 

A2

Intel Knights Landing  

many core CPUs 

Intel Haswell CPU in 

data partition

Multiple IBM 

Power9 CPUs &

multiple Nvidia

Voltas GPUS

Intel Knights Landing 

Xeon Phi many core 

CPUs

Knights Hill Xeon Phi 

many core CPUs  

System size (nodes)
5,600 

nodes

18,688

nodes
49,152

9,300 nodes

1,900 nodes in data 

partition

~3,500 nodes >2,500 nodes >50,000 nodes

System Interconnect Aries Gemini 5D Torus Aries
Dual Rail 

EDR-IB
Aries

2nd Generation Intel 

Omni-Path Architecture

File System

7.6 PB

168 GB/s,

Lustre®

32 PB

1 TB/s,

Lustre®

26 PB

300 GB/s 

GPFS™

28 PB

744 GB/s 

Lustre®

120 PB

1 TB/s

GPFS™

10PB, 210 GB/s 

Lustre initial

150 PB

1 TB/s

Lustre®

Complexity α T



12

• HMC, HBM/2/3, LPDDR4, GDDR5X, 
WIDEIO2, etc

• 2.5D, 3D Stacking

• New devices (ReRAM, PCRAM, STT-MRAM, 
Xpoint)

• Configuration diversity

– Fused, shared memory

– Scratchpads

– Write through, write back, etc

– Consistency and coherence protocols

– Virtual v. Physical, paging strategies

Memory Systems are Diversifying

http://gigglehd.com/zbxe/files/attach/images/1404665/988/406/011/788d3ba1967e2db3817d259d2e83c88e_1.jpg

https://www.micron.com/~/media/track-2-images/content-images/content_image_hmc.jpg?la=en

H.S.P. Wong, H.Y. Lee, S. Yu et al., “Metal-oxide RRAM,” Proceedings of the IEEE, 100(6):1951-70, 2012.

J.S. Vetter and S. Mittal, “Opportunities for Nonvolatile Memory Systems in Extreme-Scale High Performance 

Computing,” CiSE, 17(2):73-82, 2015.

http://gigglehd.com/zbxe/files/attach/images/1404665/988/406/011/788d3ba1967e2db3817d259d2e83c88e_1.jpg
https://www.micron.com/~/media/track-2-images/content-images/content_image_hmc.jpg?la=en
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NVRAM Technology Continues to Improve – Driven by Market Forces

http://www.eetasia.com/STATIC/ARTICLE_IMAGES/201212/EEOL_2012DEC28_STOR_MFG_NT_01.jpg

http://www.eetasia.com/STATIC/ARTICLE_IMAGES/201212/EEOL_2012DEC28_STOR_MFG_NT_01.jpg
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Comparison of Emerging Memory Technologies
Jeffrey Vetter, ORNL

Robert Schreiber, HP Labs

Trevor Mudge, University of Michigan 

Yuan Xie, Penn State University

SRAM DRAM eDRAM 2D 

NAND 

Flash

3D 

NAND 

Flash

PCRAM STTRAM 2D 

ReRAM

3D 

ReRAM

Data Retention N N N Y Y Y Y Y Y

Cell Size (F2) 50-200 4-6 19-26 2-5 <1 4-10 8-40 4 <1

Minimum F demonstrated 

(nm)

14 25 22 16 64 20 28 27 24

Read Time (ns) < 1 30 5 104 104 10-50 3-10 10-50 10-50

Write Time (ns) < 1 50 5 105 105 100-300 3-10 10-50 10-50

Number of Rewrites 1016 1016 1016 104-105 104-105 108-1010 1015 108-1012 108-1012

Read Power Low Low Low High High Low Medium Medium Medium

Write Power Low Low Low High High High Medium Medium Medium

Power (other than R/W) Leakage Refresh Refresh None None None None Sneak Sneak

Maturity

http://ft.ornl.gov/trac/blackcomb

Intel/Micron Xpoint?

http://ft.ornl.gov/trac/blackcomb
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Caches

Main Memory

I/O Device

HDD

• Newer technologies improve 

– density, 

– power usage, 

– durability

– r/w performance

• In scalable systems, a variety of 
architectures exist

– NVM in the SAN

– NVM nodes in system

– NVM in each node

As NVM improves, it is working its way toward the processor core
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Opportunities for NVM in Emerging Systems

• Burst Buffers, C/R

• In-mem
tables

• In situ visualization

J.S. Vetter and S. Mittal, “Opportunities for Nonvolatile Memory Systems in Extreme-Scale High-

Performance Computing,” Computing in Science & Engineering, 17(2):73-82, 2015, 

10.1109/MCSE.2015.4.

http://ft.ornl.gov/eavl

[Liu, et al., MSST 2012]

http://ft.ornl.gov/eavl
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Complexity is the next major challenge!

• “Exciting” times in computer architecture
– Heterogeneous cores

– Multimode memory systems

– Fused memory systems

– I/O architectures

– Error correction

– Changing system balance

• Uncertainty, Ambiguity
– How do we design future systems so that they are faster than current systems on mission applications?

• Entirely possible that the new system will be slower than the old system!

– How do we provide some level of performance portability for applications teams?

– How do we understand reliability and performance problems?

• Managing complexity is our main challenge!
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…Yields Complex Programming Models

System: MPI, Legion, HPX, Charm++, etc

Low overhead

Resource contention

Locality

Node: OpenMP, Pthreads, U-threads, etc

SIMD

NUMA, HBM

Cores: OpenACC, CUDA, OpenCL, OpenMP4, …
Memory use, 
coalescing

Data orchestration
Fine grained 
parallelism

Hardware features

This approach is not 
scalable, affordable, 
robust, elegant, etc.
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• “I know it when I see it”

• Performance portability is not a new topic

– Kuck, 1996

• For two decades, expectations were set by 
‘(Curse of) Moore’s Law’ with exception for 
MPI

– Recompile and relink

• As discussed, becoming difficult to hide 
complexity for even functional portability

• “write once, run anywhere efficiently”

• Efficiently use resource of interest

Performance Portability : what is it?

D.J. Kuck, High performance computing: challenges for future systems. New York: Oxford University Press, 1996.

A B C D

W ?

X ?

Y ?

Z ?

? ? ? ?

Application

A
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it

ec
tu

re



Programming Heterogeneous 
Systems
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• Vertically integrated toolchain for 
programming systems
– Not trying to build a complete toolchain, but 

rather leverage other software

• Define an open-source, extensible, universal 
High-Level Intermediate Representation (HLIR) 
leveraging the widely adopted LLVM 
infrastructure

• HLIR Analysis and optimization passes can be 
applied to any Frontend

• HLIR enables higher level analysis and 
transformation than low level IRs

• Lowered to LLVM or native support (e.g., 
CUDA)

HLIR Approach

ARES HLIR

LLVM (or native)

OpenARC, 
Flang, 
DSL
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OpenARC: Open Accelerator Research Compiler

• Open-Sourced, High-Level Intermediate 
Representation (HIR)-Based, Extensible Compiler 
Framework.

– Perform source-to-source translation from 
OpenACC C to target accelerator models.

• Support full features of OpenACC V1.0 ( + array reductions 
and function calls)

• Support both CUDA and OpenCL as target accelerator 
models

– Provide common runtime APIs for various back-ends 

– Can be used as a research framework for various 
study on directive-based accelerator computing. 

• Built on top of Cetus compiler framework, equipped with 
various advanced analysis/transformation passes and built-
in tuning tools.

• OpenARC’s IR provides an AST-like syntactic view of the 
source program, easy to understand, access, and transform 
the input program.
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HLIR-based, Directive-agnostic Framework provides portability
HLIR Concepts Encapsulating Existing Directive-based Accelerator Programming Models (OpenMP and OpenACC)

Features OpenACC 2.0 OpenMP 4.0 HLIR Concepts

Data Parallelism

Coarse-grain parallelism Yes Yes Coarse-parallel

Fine-grain parallelism Yes Yes Fine-parallel

Vectorization Yes Yes Vector

Task Parallelism No Yes Task

Memory Management

Structured data region Yes Yes Data-region

Unstructured data region Yes No Enter/exit data

Memory transfer Yes (rich) Yes Copyin, copyout,…

Flush No Yes Flush

Execution control

Synchronization Yes (limited) Yes Barrier

Asynchronous operation Yes Yes (indirect) Async

Critical section No Yes Critical section

Atomic operation Yes Yes Atomic

Execution Configuration
Device type Yes No Device_type

Device number Yes Yes Device_number
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Understanding Performance Portability of 
High-level Programming Models for Heterogeneous Systems 

• Problem
– Directive-based, high-level accelerator 

programming models such as OpenACC provide 
code portability. 

• How does it fare on performance portability? 

• And what architectural features/compiler optimizations 
affect the performance portability? And how much?

• Solution
– Proposed a high-level, architecture-independent 

intermediate language (HeteroIR) to map high-
level programming models (e.g., OpenACC) to 
diverse heterogeneous devices while maintaining 
portability. 

– Using HeteroIR, port and measure the 
performance portability of various OpenACC
applications on diverse architectures.

• Results
– Using HeteroIR, OpenARC ported 12 OpenACC

applications to diverse architectures (NVIDIA CUDA, 
AMD GCN, and Intel MIC), and measured the 
performance portability achieved across all applications.

– HeteroIR abstracts out the common architecture 
functionalities, which makes it easy for OpenARC (and 
other compilers) to support diverse heterogeneous 
architectures.

– HeteroIR, combined with rich OpenARC directives and 
built-in tuning tools, allows OpenARC to be used for 
various tuning studies on diverse architectures.

Amit Sabne, Putt Sakdhnagool, Seyong Lee, and Jeffrey S. Vetter. Understanding Portability of a High-level Programming 

Model on Contemporary Heterogeneous Architectures, IEEE Micro Volume 35, Issue 4 (DOI: 10.1109/MM.2015.73), 2015.
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Overall Performance Portability

• Better perf. portability among GPUs
• Lesser across GPUs and MIC
• Main reasons

– Parallelism arrangement
– Compiler optimizations : e.g. device-specific 

memories, unrolling etc.

Performance 
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Amit Sabne, Putt Sakdhnagool, Seyong Lee, and Jeffrey S. Vetter. Understanding Portability of a High-level Programming Model on 

Contemporary Heterogeneous Architectures, IEEE Micro Volume 35, Issue 4 (DOI: 10.1109/MM.2015.73), 2015.
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Intelligent selection of optimizations based on target 
architecture
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OpenACC to FPGA: A Framework for Directive-Based High-
Performance Reconfigurable Computing 

• Problem
– Reconfigurable computers, such as FPGAs, offer more 

performance and energy efficiency for specific workloads 
than other heterogeneous systems, but their programming 
complexities and low portability have limited their 
deployment in large scale HPC systems. 

• Solution
– Proposed an OpenACC-to-FPGA translation framework, 

which performs source-to-source translation of the input 
OpenACC program into an output OpenCL code, which is 
further compiled to an FPGA program by the underlying 
backend Altera OpenCL compiler.

• Recent Results
– Proposed several FPGA-specific OpenACC compiler 

optimizations and pragma extensions to achieve higher 
throughput.

– Evaluated the framework using eight OpenACC benchmarks, 
and measured performance variations on diverse 
architectures (Altera FPGA, NVIDIA/AMD GPUs, and Intel 
Xeon Phi).

• Impact
– Proposed translation framework is the first work to use a 

standard and portable, directive-based, high-level 
programming system for FPGAs.

– Preliminary evaluation of eight OpenACC benchmarks on an 
FPGA and comparison study on other accelerators identified 
that the unique capabilities of an FPGA offer new 
performance tuning opportunities different from other 
accelerators. 

S. Lee, J. Kim, and J.S. Vetter, “OpenACC to FPGA: A Framework for Directive-based High-Performance 

Reconfigurable Computing,” Proc. IEEE International Parallel & Distributed Processing Symposium (IPDPS), 2016. 
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Reconfigurable Computing Tests Performance Portability in a New 
Dimension

S. Lee, J. Kim, and J.S. Vetter, “OpenACC to FPGA: A Framework for Directive-based High-Performance Reconfigurable Computing,” Proc. IEEE 

International Parallel & Distributed Processing Symposium (IPDPS), 2016. (to appear)



Programming NVM Systems
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• Architectures will vary dramatically 
– How should we design the node?

– Portable across various NVM architectures

– MPI and OpenMP do not solve this problem.

• Two modes of operation
– Drop in replacement for DRAM

– Exploit persistence

• Active area of research
– http://j.mp/nvm-sw-survey

• Performance for HPC scenarios
– Allow user or compiler/runtime/os to exploit NVM

– Asymmetric R/W

– Remote/Local

• Assume lower power costs under normal usage

• Security

• Correctness and durability
– A crash or erroneous program could corrupt the NVM data 

structures

– Programming system needs to provide support for this model

– Enhanced ECC for NVM devices

• ACID
– Atomicity: A transaction is “all or nothing”

– Consistency: Takes data from one consistent state to  another

– Isolation: Concurrent transactions appears to be one after another

– Durability: Changes to data will remain across system boots

NVM Programming Systems : Goals

http://j.mp/nvm-sw-survey
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NVL-C: Portable Programming for NVMM

– Minimal, familiar, programming interface:

– Minimal C language extensions.

– App can still use DRAM.

– Pointer safety:

– Persistence creates new categories of pointer bugs.

– Best to enforce pointer safety constraints at compile time 
rather than run time.

– Transactions:

– Prevent corruption of persistent memory in case of 
application or system failure.

– Language extensions enable:

– Compile-time safety constraints.

– NVM-related compiler analyses and optimizations.

– LLVM-based:

– Core of compiler can be reused for other front ends and 
languages.

– Can take advantage of LLVM ecosystem.

#include <nvl.h>

struct list {

int value;

nvl struct list *next;

};

void remove(int k) {

nvl_heap_t *heap

= nvl_open("foo.nvl");

nvl struct list *a

= nvl_get_root(heap, struct list);

#pragma nvl atomic

while (a->next != NULL) {

if (a->next->value == k)

a->next = a->next->next;

else

a = a->next;

}

nvl_close(heap);

}

J. Denny, S. Lee, and J.S. Vetter, “NVL-C: Static Analysis Techniques for Efficient, Correct Programming of Non-Volatile 

Main Memory Systems,” in ACM High Performance Distributed Computing (HPDC). Kyoto: ACM, 2016
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• Applications extended with NVL-C

• Compiled with NVL-C

• Executed on Fusion ioScale

• Compared to DRAM

• Various levels of optimization

Preliminary Results

LULESH XSBENCH
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Summary

• Both architectures and applications are growing more complex
– Trends dictate that this will get worse, not better

– This complexity creates irregularity in computation, communication, and data 
movement

• Programming models must provide performance portability in this 
environment

• Examples
– Heterogeneous computing

• OpenARC provides a foundation for ‘normalizing’ hierarchical parallelism

– Memory hierarchies
• Experimenting with NVL-C prototype to understand potential
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PMES Workshop @ SC16

• https://j.mp/pmes2016

• @SC16

• Position papers due June 17

https://j.mp/pmes2016
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