
Towards next generation parallel language
framework for Petascale systems:framework for Petascale systems:
XcalableMP project and Experience from HPF

Mitsuhisa Sato
University of Tsukuba

Agenda

Lesson learned from HPF
Think about MPI …
History of HPF in JapanHistory of HPF in Japan

XcalableMP : directive-based language eXtension
for Scalable and performance-tunable Parallel
Programming

MotivationMotivation
Concept and model
Some examples

2XMP project

Message Passing Model (MPI)
M i d l th d i t i d l i th tMessage passing model was the dominant programming model in the past.

…. Yes.

Message passing is the dominant programming model today.
f l… Unfortunately, yes…

Will OpenMP be a programming model for future system?
OpenMP is only for shared memory model.

Are programmers satisfied with MPI?
yes…? Many programmers writes MPI.

Is MPI enough for parallelizing scientific parallel programs?

Application programmer’s concern is to get their answers faster!!
Automatic parallelizing compiler is the best butAutomatic parallelizing compiler is the best, but …
many problems remain.

Why was MPI accepted and so successful?

3XMP project

y p
Portability and Education, and more …?

The rise and fall of High Performance Fortran in Japan
～Lessons learned from HPF ～

(by Sakagami@NIFS and Murai@NEC)

(A similar retrospective paper was published by Prof. Ken Kennedy and
Zima)

Background of HPF (in 1992-1997, 1st draft)
MPI (message passing model) was (still now) an obstacle for
programming distributed memory systems.

Debugging MPI code is not easy, and update/modification of MPI program forces a
tough work for application peopletough work for application people.
If MPI is only a solution to parallel machine, nobody wants to use parallel machines.
(EP is ok, but …)

There was a great demand for parallel programming languages!g p p g g g g
Application people want just easy parallel programming environment with
reasonable (not necessarily perfect) performance.
OpenMP is just for shared memory systems.

4XMP project

Not practical alternative solutions. (Now, how about HPCS languages?!)

HPF history in Japan

d d d d l dJapanese supercomputer venders were interested in HPF and developed HPF
compiler on their systems.
NEC has been supporting HPF for Earth Simulator System.

Many workshops: HPF Users Group Meeting (HUG from 1996-2000), HFP intl.
workshop (in Japan, 2002 and 2005)

Japan HPF promotion consortium was organized by NEC, Hitatchi, Fujitsu …
HPF/JA proposal

Still survive in Japan, supported by Japan HPF promotion consortium

Compiler Availability
HPF/ES (HPF+HPF/JA+some extension for Earth Simulator)
HPF/SX, HPF/VPP, HPF/ES for PC clusters, fhpf (free software distributed by HPF
consortium)

5XMP project

“Pitfalls” and Lessons learned from HPF (1)

d l d l f“Ideal” design policy of HPF
A user gives a small information such as data distribution and parallelism.
The compiler generates “good” communication and work-sharing p g g g
automatically.
By ignoring directives, parallelized code can be considered as the original
sequential code.qu a od
Large specifications were included to satisfy “theoretical” completeness
of the language model.

Lesson : “Don’t give too much expectation to users
which the technology could not meet.”

Thi “id l” d i li h d t d t “ t ti ” fThis “ideal” design policy had generated a great “expectation” from
users! But, the reality was not …
Initial (reference) implementation is important to attract people.

6XMP project

No reference implementation of HPF like MPICH in MPI standard.

“Pitfalls” and Lessons learned from HPF (2)

h b l fThe base language of HPF was “immature” F90
A bad thing was that at the moment of HPF announced (mid 90’s), F90
was still immature.
Many application people had to rewrite programs in F90 in order to use
HPF

Re-write from F77 to F90 was not easy work.y

No C/C++

L A li ti l d t t t it th iLesson :“Application people don’t want to rewrite their
programs. They are very conservative”

Sometimes, they complained that “I re-wrote my program by spending a , y p y p g y p g
lot time, but the performance was not good!”
The reason why the performance of HPF was not so good was
sometimes due to the immaturity of F90 implementation.

7XMP project

y p

“Pitfalls” and Lessons learned from HPF (3)
No explicit mean for performance tuningNo explicit mean for performance tuning .

Everything depends on compiler optimization.
Users can specify more detail directives, but no information how much

f i t ill b bt i d b dditi l i f tiperformance improvement will be obtained by additional informations
INDEPENDENT for parallel loop
PROCESSOR + DISTRIBUTE
ON HOMEON HOME

The performance is too much dependent on the compiler quality,
resulting in “incompatibility” due to compilers.

Lesson :“Specification must be clear. Programmers want
to know what happens by giving directives”

The way for tuning performance should be providedThe way for tuning performance should be provided.

8XMP project

“Petascale” Parallel language design working group
ObjectivesObjectives

Making a draft on “petascale” parallel language for “standard” parallel
programming
To propose the draft to “world-wide” community as “standard”To propose the draft to world wide community as standard

Members
Academia: M. Sato, T. Boku (compiler and system, U. Tsukuba), K. Nakajima (app. and

i U T k) N i (t K U) Ok b (HPF K t U)programming, U. Tokyo), Nanri (system, Kyusyu U.), Okabe (HPF, Kyoto U.)
Research Lab.: Watanabe and Yokokawa (RIKEN), Sakagami (app. and HPF, NIFS), Matsuo
(app., JAXA), Uehara (app., JAMSTEC/ES)
Industries: Iwashita and Hotta (HPF and XPFortran, Fujitsu), Murai and Seo (HPF, NEC), (, j), (,),
Anzaki and Negishi (Hitachi)

More than 10 WG meetings have been held (Dec. 13/2007 for kick-off)

Funding for developmentFunding for development
E-science project : “Seamless and Highly-productive Parallel Programming
Environment for High-performance computing” project funded by Ministry of
Education, Culture, Sports, Science and Technology, JAPAN.

9XMP project

Education, Culture, Sports, Science and Technology, JAPAN.
Project PI: Yutaka Ishiakwa, co-PI: Sato and Nakashima(Kyoto), PO: Prof. Oyanagi
Project Period: 2008/Oct to 2012/Mar (3.5 years)

Requirements of “petascale” language

Performance
The user can achieve performance “equivalent to in MPI”
More than MPI – one-sided communication (remote memory copy)(y py)

Expressiveness
h ll li i l i i iThe user can express parallelism “equivalent in MPI” in easier way.

Task parallelism – for multi-physics

Optimizability
Structured description of parallelism for analysis and optimization
Should have some mechanism to map to hardware network topologyShould have some mechanism to map to hardware network topology

Education cost

10XMP project

For non-CS people, it should be not necessarily new, but practical

http://www.xcalablemp.org

XcalableMP : directive-based language eXtension
for Scalable and performance-tunable Parallel Programming

“Scalable” for Distributed Memory
node0 node1 node2

Directive-based language extensions for familiar languages F90/C/C++
To reduce code-rewriting and educational costs.

Scalable for Distributed Memory
Programming

SPMD as a basic execution model
A thread starts execution in each node directives

Duplicated execution

A thread starts execution in each node
independently (as in MPI) .
Duplicated execution if no directive specified.
MIMD for Task parallelism

directives
Comm, sync and work-sharing

“performance tunable” for explicit
communication and synchronization.

Work-sharing and communication occurs when directives are encountered

11XMP project

Work sharing and communication occurs when directives are encountered
All actions are taken by directives for being “easy-to-understand” in
performance tuning (different from HPF)

Overview of XcalableMP
XMP supports typical parallelization based on the data parallel paradigmXMP supports typical parallelization based on the data parallel paradigm
and work sharing under "global view“

An original sequential code can be parallelized with directives, like OpenMP.

XMP also includes CAF-like PGAS (Partitioned Global Address Space)XMP also includes CAF-like PGAS (Partitioned Global Address Space)
feature as "local view" programming.

User applications

Global view Directives

Us app a o s

•Support common pattern

Local view
Directives

Array section
in C/C++

XMP

Support common pattern
(communication and work-
sharing) for data parallel
programming
•Reduction and scatter/gather
C i ti f l Directives

(CAF/PGAS)MPI
Interface

XMP
runtime
libraries

XMP parallel execution model

•Communication of sleeve area
•Like OpenMPD, HPF/JA, XFP

12XMP project

Two-sided comm. (MPI) One-sided comm.
(remote memory access)

Parallel platform (hardware+OS)

Code Example

int array[YMAX][XMAX];

#pragma xmp nodes p(4)#pragma xmp nodes p(4)
#pragma xmp template t(YMAX)
#pragma xmp distribute t(block) on p
#pragma xmp align array[i][*] to t(i)

data distribution

main(){
int i, j, res;
res = 0;

add to the serial code : incremental parallelization

res 0;

#pragma xmp loop on t(i) reduction(+:res)
for(i = 0; i < 10; i++)
f (j 0 j < 10 j){for(j = 0; j < 10; j++){

array[i][j] = func(i, j);
res += array[i][j];

}

work sharing and data synchronization

13XMP project

}
}

The same code written in MPI
int array[YMAX][XMAX];int array[YMAX][XMAX];

main(int argc, char**argv){
int i,j,res,temp_res, dx,llimit,ulimit,size,rank;

MPI_Init(argc, argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
dx = YMAX/size;dx YMAX/size;
llimit = rank * dx;
if(rank != (size - 1)) ulimit = llimit + dx;
else ulimit = YMAX;

temp_res = 0;
for(i = llimit; i < ulimit; i++)

for(j = 0; j < 10; j++){
array[i][j] = func(i, j);array[i][j] func(i, j);
temp_res += array[i][j];

}

MPI Allreduce(&temp res, &res, 1, MPI INT, MPI SUM, MPI COMM WORLD);

14XMP project

MPI_Allreduce(&temp_res, &res, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
MPI_Finalize();

}

Nodes, templates and data/loop distributions

d h d fIdea inherited from HPF
Node is an abstraction of processor and memory in distributed memory
environment.

#pragma xmp nodes p(32)

Template is used as a dummy array distributed on nodes

variable loop

#pragma xmp nodes p(32)

#pragma xmp template t(100)
di ib (bl k)

A global data is
aligned to the template

variable
V1

variable
V2

Ali

loop
L1

variable
V3

loop
L2

loop
L3

Align
directive L

#pragma distribute t(block) on p

g p

Loop iteration must also be template

Align
directive

Loop
directive

V3

t l t

directive

Align
directive

Loop
directive

Loop
directive

#pragma xmp distribute array[i][*] to t(i)

aligned to the template
by on-clause.

T1

Distribute directive

template
T2

Distribute directive
#pragma xmp loop on t(i)

15XMP project

nodes
P

Array data distribution
The following directives specify a data distribution among nodesThe following directives specify a data distribution among nodes

#pragma xmp nodes p(*)
#pragma xmp template T(0:15)
#pragma xmp distribute T(block) on p
#pragma xmp align array[i] to T(i)#pragma xmp align array[i] to T(i)

array[]

node1

node0

node1

node2

node3

Reference to assigned to Assign loop iteration
as to compute own regions

16XMP project

other nodes may causes
error!!

as to compute own regions

Communicate data between other nodes

Parallel Execution of “for” loop
#pragma xmp nodes p(*)
#pragma xmp template T(0:15)

Execute for loop to compute on array

Data region to be computed
by for loop

#pragma xmp loop on t(i)
for(i=2; i <=10; i++)

#pragma xmp template T(0:15)
#pragma xmp distributed T(block) on p
#pragma xmp align array[i] to T(i)

array[]

by for loopfor(i=2; i <=10; i++)

d 0

Execute “for” loop in parallel with affinity to array distribution by on-clause：
#pragma xmp loop on t(i)

node1

node0

node2

node3

17XMP project
Array distribution

Data synchronization of array (shadow)
E h d t l “ h d ” (l) iExchange data only on “shadow” (sleeve) region

If neighbor data is required to communicate, then only sleeve
area can be considered.

l b[i] [i 1] [i 1]example：b[i] = array[i-1] + array[i+1]
#pragma xmp align array[i] to t(i)

d 0

array[]

#pragma xmp shadow array[1:1]

node1

node0

node2

node3

18XMP project

Programmer specifies sleeve region explicitly
Directive：#pragma xmp reflect array

XcalableMP example (Laplace, global view)
#pragma xmp nodes p(NPROCS)#pragma xmp nodes p(NPROCS)
#pragma xmp template t(1:N)
#pragma xmp distribute t(block) on p

double u[XSIZE+2][YSIZE+2],

Definition of nodes

Template to define
distribution

uu[XSIZE+2][YSIZE+2];
#pragma xmp align u[i][*] to t(i)
#pragma xmp align uu[i][*] to t(i)
#pragma xmp shadow uu[1:1][0:0]

for(k = 0; k < NITER; k++){
/* old <- new */

#pragma xmp loop on t(x)
for(x = 1; x <= XSIZE; x++)

lap_main()
{
int x,y,k;
double sum;

for(y = 1; y <= YSIZE; y++)
uu[x][y] = u[x][y];

#pragma xmp reflect uu
#pragma xmp loop on t(x)

for(x = 1; x <= XSIZE; x++)

Use “align” to specify data
distribution
For data synchronization,
use “shadow” directive

…
for(x = 1; x <= XSIZE; x++)
for(y = 1; y <= YSIZE; y++)
u[x][y] = (uu[x-1][y] + uu[x+1][y

uu[x][y-1] + uu[x][y+1])/4.0
}

specify sleeve area

/* check sum */
sum = 0.0;

#pragma xmp loop on t[x] reduction(+:sum)
for(x = 1; x <= XSIZE; x++)

for(y = 1; y <= YSIZE; y++)
Loop partitioning
And scheduling

19XMP project

for(y 1; y < YSIZE; y++)
sum += (uu[x][y]-u[x][y]);

#pragma xmp block on master
printf("sum = %g\n",sum);

}

And scheduling

Data synchronization

Data synchronization of array (full shadow)
Full shadow specifies whole data replicated in all nodesFull shadow specifies whole data replicated in all nodes

#pragma xmp shadow array[*]
reflect operation to distribute data to every nodes

#pragma reflect array#pragma reflect array
Execute communication to get data assigned to other nodes
Most easy way to synchronize → But, communication is expensive!

node0

array[]

node1

node0

node2

node3

20XMP project
Now, we can access correct data by

local access !!

XcalableMP example (NPB CG, global view)
#pragma xmp nodes p(NPROCS)
#pragma xmp template t(N)
#pragma xmp distribute t(block) on p
...
#pragma xmp align [i] to t(i) :: x,z,p,q,r,w

Define nodes

Define template
di t ib t d t d#p ag a p a g [] to t() :: , ,p,q, ,

#pragma xmp shadow [*] :: x,z,p,q,r,w
...

/* code fragment from conj_grad in NPB CG */
sum = 0.0;
#

distributed onto nodes

Align to the
#pragma xmp loop on t(j) reduction(+:sum)

for (j = 1; j <= lastcol-firstcol+1; j++) {
sum = sum + r[j]*r[j];

}
rho = sum;

template for data
distribution
In this case, use
“full shadow” ;

for (cgit = 1; cgit <= cgitmax; cgit++) {
#pragma xmp reflect p
#pragma xmp loop on t(j)

for (j = 1; j <= lastrow-firstrow+1; j++) {
sum 0 0;Work sharing sum = 0.0;
for (k = rowstr[j]; k <= rowstr[j+1]-1; k++

sum = sum + a[k]*p[colidx[k]];
}
w[j] = sum;

Work sharing
Loop scheduling

Data synchronization in

21XMP project

}
#pragma xmp loop on t(j)

for (j = 1; j <= lastcol-firstcol+1; j++) {
q[j] = w[j];

}

Data synchronization, in
this case, all gather

XcalableMP Global view directives

E ti l t dExecution only master node
#pragma xmp block on master

Broadcast from master node
#pragma xmp bcast (var)

Barrier/Reduction
#pragma xmp reduction (op: var)
#pragma xmp barrier#pragma xmp barrier

Global data move directives for collective comm./get/put

Task parallelism
#pragma xmp task on node-set

22XMP project

#pragma xmp task on node set

XcalableMP Local view directives
X l bl MP l i l d CAF lik PGAS (P titi d Gl b l Add S) f tXcalableMP also includes CAF-like PGAS (Partitioned Global Address Space) feature
as "local view" programming.

The basic execution model of XcalableMP is SPMD
Each node executes the program independently int A[10]:

Array section in C
Each node executes the program independently
on local data if no directive

We adopt Co-Array as our PGAS feature.
In C language, we propose array section construct.

f

int A[10]:
int B[5];

A[4:9] = B[0:4];

Can be useful to optimize the communication
Support alias Global view to Local view

int A[10], B[10];
#pragma xmp coarray [*]: A, B
…
A[:] = B[:]:[10];

For flexibility and extensibility, the execution model allows combining with
explicit MPI coding for more complicated and tuned parallel codes & libraries.

Need to interface to MPI at low level to allows the programmer to use MPI forNeed to interface to MPI at low level to allows the programmer to use MPI for
optimization
It can be useful to program for large-scale parallel machine.

23XMP project

For multi-core and SMP clusters, OpenMP directives can be combined into
XcalableMP for thread programming inside each node for hybrid programming.

Position of XcalableMP

ni
ng

MPI

m
an

ce
 t

un

Cost to

MPI
PGASXscalableMP

of
 P

er
fo

rm

Cost to
obtain
Perfor-
mance

chapel

D
eg

re
e

o

HPF

chapel

D

Automatic
parallelization

24XMP project

Programming cost

Summary http://www.xcalablemp.org

Our objective of “language working group” is to design
“standard” parallel programming language for petascale p p g g g g p
distributed memory systems

High productivity for distributed memory parallel programming
Not just for research, but collecting ideas for “standard”j , g
Distributed memory programming “better than MPI” !!!

XcalableMP project: status and scheduleXcalableMP project: status and schedule
1Q/09 first draft of XcalableMP specification
2Q/09 β release, C language version
3Q/09 Fortran version (for SC09 HPC Challenge!)3Q/09 Fortran version (for SC09 HPC Challenge!)
Ask international community for review of the specification

25XMP project

Thank you for your attention!!!Thank you for your attention!!!

XcalableMP is under design Any comments andXcalableMP is under design. Any comments and
contributions will be very welcome!

Q & A?

26XMP project

