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What is DNS in combustion?

Fluid mechanics: solve Navier-Stokes equations to determine one realization of 
the flow

All lengthscales and timescales are resolved
Limited to low-to-moderate Reynolds numbers (103 - 104)
Cost scales roughly as Re3

DNS in combustion: include chemistry, mass and energy conservation
Usual simplifications in 3D reacting flows

Reduced/small chemical networks (mechanisms)
Simple transport
No radiation
Single phase flow

Not all “possible” timescales are captured in general
No single investigator can implement all the physics and numerics while 
achieving peak performance in modern hardware. 

Heavy use of libraries for chemistry/transport (Chemkin, Cantera)
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Equations
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Chemistry
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Table 2.1 Constants in the expression k = BTn exp(−E/RT ) in the rate coefficients
of some important elementary reactions

Nr. Reaction B n E
mole, cm3, sec kJ/mole

1.1 H2/O2 Chain Reactions

1f O2+H→OH+O 2.000E+14 0.00 70.30

1b OH+O→O2+H 1.568E+13 0.00 3.52

2f H2+O→OH+H 5.060E+04 2.67 26.30

2b OH+H→H2+O 2.222E+04 2.67 18.29

3f H2+OH→H2O+H 1.000E+08 1.60 13.80

3b H2O+H→H2+OH 4.312E+08 1.60 76.46

4f OH+OH→H2O+O 1.500E+09 1.14 0.42

4b H2O+O→OH+OH 1.473E+10 1.14 71.09

1.2 HO2 Formation and Consumption

5f O2+H+M’→HO2+M’ 2.300E+18 -0.80 0.00

5b HO2+M’→O2+H+M’ 3.190E+18 -0.80 195.39

6 HO2+H→OH+OH 1.500E+14 0.00 4.20

7 HO2+H→H2+O2 2.500E+13 0.00 2.90

8 HO2+OH→H2O+O2 6.000E+13 0.00 0.00

9 HO2+H→H2O+O 3.000E+13 0.00 7.20

10 HO2+O→OH+O2 1.800E+13 0.00 -1.70

1.3 H2O2 Formation and Consumption

11 HO2+HO2→H2O2+O2 2.500E+11 0.00 -5.20

12f OH+OH+M’→H2O2+M’ 3.250E+22 -2.00 0.00

12b H2O2+M’→OH+OH+M’ 1.692E+24 -2.00 202.29

13 H2O2+H→H2O+OH 1.000E+13 0.00 15.00

14f H2O2+H→H2+HO2 1.700E+12 0.00 15.70

14b H2+HO2→H2O2+H 1.150E+12 0.00 80.88
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Table 2.1 continued

Nr. Reaction B n E
mole, cm3, sec kJ/mole

1.4 Recombination Reactions

15 H+H+M’→H2+M’ 1.800E+18 -1.00 0.00

16 OH+H+M’→H2O+M’ 2.200E+22 -2.00 0.00

17 O+O+M’→O2+M’ 2.900E+17 -1.00 0.00

2. CO/CO2 Mechanism

18f CO+OH→CO2+H 4.400E+06 1.50 -3.10

18b CO2+H→CO+OH 4.956E+08 1.50 89.76

3.1 CH Consumption

19 CH+O2→CHO+O 3.000E+13 0.00 0.00

20 CO2+CH→CHO+CO 3.400E+12 0.00 2.90

3.2 CHO Consumption

21 CHO+H→CO+H2 2.000E+14 0.00 0.00

22 CHO+OH→CO+H2O 1.000E+14 0.00 0.00

23 CHO+O2→CO+HO2 3.000E+12 0.00 0.00

24f CHO+M’→CO+H+M’ 7.100E+14 0.00 70.30

24b CO+H+M’→CHO+M’ 1.136E+15 0.00 9.97

3.3 CH2 Consumption

25f CH2+H→CH+H2 8.400E+09 1.50 1.40

25b CH+H2→CH2+H 5.830E+09 1.50 13.08

26 CH2+O→CO+H+H 8.000E+13 0.00 0.00

27 CH2+O2→CO+OH+H 6.500E+12 0.00 6.30

28 CH2+O2→CO2+H+H 6.500E+12 0.00 6.30
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Table 2.1 continued

Nr. Reaction B n E
mole, cm3, sec kJ/mole

3.4 CH2O Consumption

29 CH2O+H→CHO+H2 2.500E+13 0.00 16.70

30 CH2O+O→CHO+OH 3.500E+13 0.00 14.60

31 CH2O+OH→CHO+H2O 3.000E+13 0.00 5.00

32 CH2O+M’→CHO+H+M’ 1.400E+17 0.00 320.00

3.5 CH3 Consumption

33f CH3+H→CH2+H2 1.800E+14 0.00 63.00

33b CH2+H2→CH3+H 3.680E+13 0.00 44.30

34 CH3+H+(M)→CH4+(M) k∞ 2.108E+14 0.00 0.00

k0 6.257E+23 -1.80 0.00

35 CH3+O→CH2O+H 7.000E+13 0.00 0.00

36 CH3+CH3+(M)→C2H6+(M) k∞ 3.613E+13 0.00 0.00

k0 1.270E+41 -7.00 11.56

37 CH3+O2→CH2O+OH 3.400E+11 0.00 37.40

38f CH4+H→CH3+H2 2.200E+04 3.00 36.60

38b CH3+H2→CH4+H 8.391E+02 3.00 34.56

39 CH4+O→CH3+OH 1.200E+07 2.10 31.90

40f CH4+OH→CH3+H2O 1.600E+06 2.10 10.30

40b CH3+H2O→CH4+OH 2.631E+05 2.10 70.92

4.1 C2H Consumption

41f C2H+H2→C2H2+H 1.100E+13 0.00 12.00

41b C2H2+H→C2H+H2 5.270E+13 0.00 119.95

42 C2H+O2→CHCO+O 5.000E+13 0.00 6.30
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Table 2.1 continued

Nr. Reaction B n E
mole, cm3, sec kJ/mole

5.3 C3H5 Consumption

69f C3H5→C3H4+H 3.980E+13 0.00 293.10

69b C3H4+H→C3H5 1.267E+13 0.00 32.48

70 C3H5+H→C3H4+H2 1.000E+13 0.00 0.00

5.4 C3H6 Consumption

71f C3H6→C2H3+CH3 3.150E+15 0.00 359.30

71b C2H3+CH3→C3H6 2.511E+12 0.00 -34.69

72 C3H6+H→C3H5+H2 5.000E+12 0.00 6.30

5.5 C3H7 Consumption

73 n-C3H7→C2H4+CH3 9.600E+13 0.00 129.80

74f n-C3H7→C3H6+H 1.250E+14 0.00 154.90

74b C3H6+H→n-C3H7 4.609E+14 0.00 21.49

75 i-C3H7→C2H4+CH3 6.300E+13 0.00 154.50

76 i-C3H7+O2→C3H6+HO2 1.000E+12 0.00 20.90

5.6 C3H8 Consumption

77 C3H8+H→n-C3H7+H2 1.300E+14 0.00 40.60

78 C3H8+H→i-C3H7+H2 1.000E+14 0.00 34.90

79 C3H8+O→n-C3H7+OH 3.000E+13 0.00 24.10

80 C3H8+O→i-C3H7+OH 2.600E+13 0.00 18.70

81 C3H8+OH→n-C3H7+H2O 3.700E+12 0.00 6.90

82 C3H8+OH→i-C3H7+H2O 2.800E+12 0.00 3.60

[M’] = 6.5[CH4]+6.5[H2O]+1.5[CO2]+0.75[CO]+0.4[O2]+0.4[N2]+1.0[Other]
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Problem
There is no spatial or temporal scale separation
In general, everything is coupled: small scales with large scales, heat release with 
momentum, composition with thermodynamics
Practical (device level) simulations are accomplished by imposing an affordable 
computational cost (filtering) and modeling the nonlinear interaction terms that 
result: large-eddy simulation (LES)
The most successful use of DNS is to gain understanding of the turbulence-
combustion interaction regimes, which do produce “high-fidelity” closures for LES 
DNS is usually setup to investigate combustion regimes in turbulent flows:

ignition kernels, 
flames, 
flame edges (tribrachial flames), 
flameless combustion

What are the effects of unstationarity on the combustion structure?
Is there a change in the turbulence structure due to heat release?
DNS can be a powerful technique applied to laboratory controlled flames, where 
statistically steady state can be achieved and direct comparisons can be made

turbulent lifted jet flames and Bunsen flames
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Turbulence-combustion interaction
With the fluid dynamical lengthscale (Kolmogorov) η and a combustion 
lengthscale l  (flame thickness), there are three regimes
i) l  « η  little fluid dynamical interaction, one way heat release coupling only

ii) l  ~ η  strong fluid dynamical interaction (most challenging regime)

iii) l  » η  little combustion interaction at the Kolmogorov scale

Because turbulence involves a hierarchy of scales, third regime almost always 
presents interaction but at a larger scale than η
Details of the interaction depend on the combustion regime: premixed, 
nonpremixed or partially premixed
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the turbulent Damköhler number

Da! = τ/tF = sL"/v
′"F (11.28)

and the turbulent Karlovitz number

Ka = Da−1
η = tF /tη = "2F /η2 = v2

η/s
2
L. (11.29)

The Karlovitz number is therefore equal to the inverse of a Damköhler number defined
with the Kolmogorov time scale rather than with the integral time scale. These definitions
can be used to derive the following relations between the ratios v′/sL and "/"F in terms
of the three nondimensional numbers Re,Da, and Ka as

v′/sL = Re("/"F )−1

= Da−1("/"F ) (11.30)

= Ka2/3("/"F )1/3

In the following we will discuss Borghi’s diagramm Fig. 11.1 for premixed combustion
(conf. [11.1]) and plot the logarithm of v′/sL over the logarithm of "/"F . In this diagramm,
the lines Re = 1, Da = 1, and Ka = 1 represent boundaries between the different regimes
of premixed turbulent combustion. Another boundary of interest is the line sL = 1, which
separates the wrinkled and corrugated flamelets.

1 5 10

1

5

10

!
 
/ !F

v'
sL

Ka =1

Re <1

Re =1

Da =1

well-stirred reactor
Da <1

wrinkled flamelets

corrugated flamelets
Ka <1

distributed reaction zones
Da >1, Ka >1

flamelet
regime

Fig. 11.1: Phase diagram showing different regimes in premixed turbulent combustion
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Classical DNS code

7

It used to be the case that one could 
encapsulate most of the hardware 
performance issues within the BLAS/LAPACK 
subroutines
This is proving harder now with new systems
Mostly, hardware change too fast for us to 
evolve accordingly
Performance issues are spilling back at the 
level of the Solver       and Parallelism     

Transport terms (second order derivatives) are 
very important in combustion
Need to use high order methods: 4th, 6th, or 8th

Conservation of mass, energy are very 
important in combustion
Low numerical dissipation is preferred in 
turbulence simulations
Stiff integrator to remove short timescales in 
the chemistry



Effect of heat release on turbulence
Consider nonpremixed turbulent combustion
Simplify chemistry to the infinitely-fast regime (one-way 
coupling)
One-step Methane-Air and Hydrogen-Air
1 - 5 x 108 grid cells
Re = 5000 - 10,000
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Figure 1. Schematic diagram of the temporally evolving shear layer
(x = x1, y = x2 and z = x3).

(the simulations have γ ≈ 1.4 and M ≈ 0.7). Exploratory calculations at other Mach
numbers verified compressibility to be unimportant for all results reported here.

To help clarify influence of heat release, DNS results are reported here for three
different levels of heat release. A number of questions are addressed. How does heat
release change the scaling of the micromixing time scale, as measured by the scalar
dissipation normalized by outer flow variables? How do scalar statistics change with
heat release? What is the effect of heat release on the conditional scalar dissipation?
How is the average reaction-rate term affected by heat release? What are the statistics
of the scalar field at the flame? How is the mechanical-to-scalar time-scale ratio
affected by heat release? What are the differences between laminar and turbulent
mixing at the stoichiometric surface?

2. The flow addressed
Figure 1 is a sketch of the flow configuration considered. The upper stream is air

(approximated as a mixture of oxygen and nitrogen with an oxygen mass fraction
of 0.23) and the lower a mixture of methane and nitrogen with a methane mass
fraction of 0.23. The latter value was chosen because the chemistry that occurs at
the reaction sheet, CH4 + 2O2 → CO2 +2H2O, then yields a stoichiometric mixture
fraction Zs = 0.2, that is the Burke–Schumann sheet which exists at Z = Zs and into
which CH4 and O2 diffuse in stoichiometric proportions from opposite directions, is
at Z = 0.2, as is seen in figure 2. For the more usual case of pure methane reacting
with the air stream, Zs = 0.054, which is too small for convenient resolution of the
temperature gradient on the air side in the simulation. Since a symmetric problem,
Zs = 0.5, is atypical of most real fuel–air or fuel–oxygen combustion situations, the
value Zs = 0.2 is selected as a compromise that preserves the qualitative effects of
real stoichiometry while affording good DNS resolution. There is, in addition, some



Energy spectra

Heat release does not seem to affect the inertial and dissipation subranges of the 
turbulent flow (Knaus & Pantano 2008)
This validates our current models in the high heat release regime, which are based on 
incompressible turbulence

9
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Case Q µχ σχ Sk

A 0.0 −5.323 1.716 −0.329
B 3.73 −6.165 1.710 −0.025
C 7.46 −6.021 1.677 −0.027

Table 4. Mean, standard deviation and skewness factor associated with the p.d.f. of
ln(χδω/%u), conditioned at Z = Zs = 0.2 for different levels of heat release.
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Figure 21. Scalar isocontour at Z = Zs for simulation C at late time.

The more negative values of µχ in table 4 for Q "= 0 reflect the correspondingly
lower averages seen in figure 17. The standard deviations, however, are seen in
table 4 to be essentially independent of Q. The skewness factor in table 4 is larger
in magnitude by more than a factor of 10 for Q = 0 than for Q "= 0, this difference
also being visible in figure 20. In all cases, however, log normality begins to fail in
the tails (figure 20). In summary, effects of heat release on the conditional p.d.f. of χ
are noticeable but not large.

The conditional scalar dissipation is related to the thickness of the zone about
Z = Zs in which molecular mixing and associated chemistry may occur. Roughly
speaking, this thickness is of order Zs/|∇Z|, the gradient being conditioned on Z = Zs

Williams (1975); Vervisch & Poinsot (1998), and therefore an associated characteristic
length may be defined as l = Zs

√
2D/χ , with D and χ correspondingly conditioned.

Since heat release increases this D and decreases this χ (figure 17), it increases l, but it
otherwise has little effect on the statistics of l, according to the results just described.
The increase of l is visually apparent in figure 11, where contours at Z = Zs ± 0.1
have been thickened. Although there are large fluctuations, the average distance
between these contours is larger in figure 11(b). A three-dimensional rendering of the
stoichiometric surface in case C is given in figure 21, and a closeup of a section of
figure 21, showing grid sizes employed, is shown in figure 22. The following sections
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Jet flame stabilization and edge flames

Simulation of methane-air jet flame (3D) using 4 step reduced chemistry

Re=3000, 108 grid points, 1.2 109 DOF
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In (3.10), the viscous stress tensor is given by

σij =
µ∗

Re

{
∂ui

∂xj

+
∂uj

∂xi

− 2

3

∂uk

∂xk

δij

}
, (3.12)

and in (3.11), the viscous dissipation is

Φ = σij

∂ui

∂xj

. (3.13)

The non-dimensional average specific heat of the mixture is

C̄p =
N∑

i=1

Cpi(T )Yi, (3.14)

where the specific heats at constant pressure, Cpi(T ) are expressed as polynomial
functions of the temperature with coefficients given by McBride et al. (1993). The
enthalpy, hi , is defined by

hi =
%ho

i

CpOo
To

+

∫ T

1

Cpi(T ) dT . (3.15)

The non-dimensional equation of state of the mixture is

p =
ρT

γoM2W
. (3.16)

The specific heat ratio of the mixture, γ , varies somewhat and is given by

γ =
γo

γo − (γo − 1)/WC̄p

. (3.17)

The non-dimensional transport coefficients µ∗, δ∗ and κ∗ are given by

µ∗ = δ∗ = κ∗ = T m, (3.18)

with m = 0.7. The heat-release parameter Q of (3.2) is equal to 7.45 and it would be
equal to Tf /To − 1 if the specific heat of the mixture were constant.

Finally, a mixture fraction field, Z, is computed along with the rest of the variables.
This field obeys the following transport equation,

∂(ρZ)

∂t
+

∂(ρZuk)

∂xk

=
1

Re Sc

∂

∂xk

(
δ∗ ∂Z

∂xk

)
, (3.19)

where the mixture fraction Schmidt number is Sc=Pr. This implies that the Lewis
number is one for this field. The Z field is used to initialize the flame and to help in
the interpretation and extraction of statistical information.

3.2. Chemistry model

Peters (1985) reduced mechanism can be represented by the following global reactions

CH4 + 2H + H2O = CO + 4H2 (I ),

CO + H2O = CO2 + H2 (II ),

H + H + M = H2 + M (III ),

O2 + 3H2 = 2H + 2H2O (IV ),

hydrogen atom flame surface



Unstationary effects

Flame edges experience substantial unstationary effects, even at the modest Reynolds 
number of this simulation
Models can incorporate this information

11
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Figure 20. Joint flame-edge velocity-scalar dissipation p.d.f. The thick horizontal line re-
presents quenching value of scalar dissipation, χq , and the vertical line represents stabilization
flame-edge speed.

is expected that the flame ceases to exist for values of the scalar dissipation around
the quenching value. In this figure, some edges propagating with negative velocities
are encountered in the regions where χ is somewhat larger than the laminar quenching
value, χq . This has been observed in the past by Mahalingam et al. (1995) in DNS of
turbulent non-premixed combustion. They also identify the fact that the flow boundary
conditions used in laminar calculations can influence the precise numerical value of
the extinction limit. These boundary conditions cannot capture all unstationary and
three-dimensional effects. For these reasons, we do not expect that the quenching
value, χq , obtained from any specific one-dimensional configuration of the flame will
give quantitatively accurate values in three-dimensional flows, though, typically the
agreement is very good.

On the other limit of χ , as the scalar dissipation becomes small, the joint p.d.f.
is non-negligible towards positive Ve. Based on previous works of two-dimensional
simulation of edge flames, it is expected that this vertical asymptote should be centred
around the stabilization edge speed. This speed is estimated here, following Ruetsch
et al. (1995), as the product of the laminar premixed speed at the stoichiometric
conditions, SL,st , multiplied by the square root of the density ratio of the frozen flow,
ρf , to that of the diffusion flame, ρb. The value we estimate is SL,st

√
(ρf /ρb) = 0.058

and is shown in figure 20 as a vertical thick line. It can be seen that the peak of the
joint p.d.f. is centred around this value in this region.

6.3. Heat release rate statistics

Among the multiple statistics that can be investigated in turbulent non-premixed
combustion with extinction, the correlation between heat release rate and scalar
dissipation has been the subject of increased attention. This correlation has been
investigated in the past using DNS by Mahalingam et al. (1995) for one- and two-
step chemistry and by Swaminathan et al. (1996) using single-step chemistry. They
observe, in accordance with laminar theory (Peters 1984), that the heat release rate
increases with increasing scalar dissipation. Figure 21 shows the conditional joint
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small holes. Several assumptions and simplifications

are made in order to obtain a manageable theory that

incorporates the physical elements relevant to the sta-

tistics of flame extinction dynamics. Statistical mod-

els have been proposed [45,46] in which holes would

be created whenever χs > χq and would close when

χs < χ0, where χ0 is the scalar dissipation value at

which the edge-flame velocity of the triple flame is

zero. We do not make this assumption but instead con-

struct a model that, in principle, takes into account the

complete dependence of the propagation velocity on

the scalar dissipation at the stoichiometric surface.

2. Flame-hole dynamics

A flame is a three-dimensional object and flame

edges are generally three-dimensional structures that

can form either triple flames or simple edge flames

depending on the value of the rate of strain or, equiva-

lently, that of the local Damköhler number. Presently,

for simplicity, we conceive a partially extinguished

flame as an ensemble of burning and quenched re-

gions on a three-dimensional surface, defined here as

the stoichiometric surface [47]; the boundary separat-

ing these regions is called here the flame edge. Our

approach of idealizing the flame as a surface is done

on the grounds of simplicity and tractability; it is re-

lated to the well-known flamelet concept [48–51]. In

this regime, the Damköhler number is large and the

reaction zone is very thin with respect to the flow

length scales in most of the region of interest. A flame

close to extinction is not necessarily thin with respect

to the typical flow length scale, but this simplification

reduces the complexity of the problem substantially.

The mechanisms that sustain the flame in the burning

regions are well understood: diffusion of reactants to-

ward the reaction zone followed by conversion into

products and heat that are then convected away. On

the extinguished region, we assume that only mixing

of reactants take place; the frozen regime.

To close the physical description of our concep-

tual model we assume that the edges of the flame

can propagate toward the burning region, leading to

further extinction, or propagate in the opposite direc-

tion reducing the extinguished region. The velocity at

which the flame edge propagates depends on the rela-

tive velocity of the flow at the flame edge and on the

edge-flame velocity, Ve. This latter velocity depends

on the local value of Da. For our purposes, the ef-

fect of the turbulence on the edge-flame velocity is

felt through the scalar dissipation that is assumed to

be a random function of space and time. Moreover,

it is known that gas expansion effects can alter sub-

stantially the speed of propagation of flame edges [7].

These effects can be incorporated in the present model

Fig. 1. Geometrical sketch of a flame hole and its associated

local orthogonal coordinate system.

if a suitable stabilization edge velocity is used. Addi-

tional local coupling that originates from interaction

of the edge-flame structure with the mixture frac-

tion field is not considered explicitly. For example,

the results of Favier and Vervisch [52] suggest that

the scalar dissipation field is altered somewhat after

extinction takes place. Presently, these effects are as-

sumed to be contained in the statistical description of

χs that, in our modeling, is provided externally. Possi-

ble effects due to buoyancy, as described by [53], are

also neglected.

We first consider the evolution of an arbitrary

flame edge forming a hole and assume that it is iso-

lated from other holes in its neighborhood. From this

point on, we understand holes in the extended sense;

that is, we consider also the cases where flame extinc-

tion leads to the formation of strips. A schematic of

the flame-hole geometry is shown in Fig. 1. The coor-

dinates of the edge of the flame hole Γi are denoted as

!rei(s, t), where s is the arc-length parameter along the

edge, oriented in the direction shown in Fig. 1, and t

is time, such that the length of the flame edge is given

by

(1)Li(t) =
∮

Γi

ds.

The flame normal is denoted by

(2)!n = ∇Z

|∇Z| ,

evaluated at !rei and the tangent to the flame edge
curve is denoted by

(3)!t = ∂!rei/∂s

|∂!rei/∂s| .



Future algorithms
additive time integrators for stiff systems (ASIRK, IMEX, ...)

global Newton methods
adaptive mesh refinement
implicit geometry and fictitious domain methods for interface problems

immersed interface method (Leveque & Li 1994), Lee & Leveque 2003)
immersed boundary method (Lai & Peskin 1998)
Lagrange multiplier/penalty (Glowinski et al. 2001)
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Abstract

An additive semi-implicit third-order Runge–Kutta family of schemes for nonstiff systems of equations is presented. These
schemes involve a single implicit stage and two explicit stages and posses a linear stability domain that is larger than that of
explicit Runge–Kutta schemes of the same order. The improved stability domain can be useful in some problems involving large
systems of equations where a few components impose too stringent time-step limitations.
 2006 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Systems of differential equations can be classified according to whether the system is stiff or not. In the former case,
it is typically preferred to integrate the equations using implicit methods, while in the latter case explicit methods are
preferred. In some problems of practical interest, a few components of a system of differential equations may impose
too stringent time-step limitations for explicit integrators. The penalty paid if we use implicit methods is that implicit
systems of equations must be solved. For the large systems of equations encountered in physical and engineering
applications, these implicit systems typically represent the limiting computational and storage factor. If the system
of equations is not really stiff but just a few components limit the maximum time step that can be used, it may be
preferable to use stabilized explicit methods [8,13,9]. One disadvantage of stabilized methods when dealing with
systems where a few number of components impose too stringent time step limitation is that all components of the
system of equations are treated equally; knowledge of the components causing the time-step difficulty is not exploited.
In general, the choice of the most appropriate method for a specific problem is not simple and depends on stability,
accuracy, cost and storage considerations. For the popular Runge–Kutta class of methods considered in this paper, an
alternative to stabilized methods is to use additive semi-implicit schemes and treat the time-step limiting part of the
system implicitly. Additive schemes were first proposed by [5] and a number of methods exist [2,15,1,12,4,6,7]. They
are appropriate for systems of equations of the form

ẏ = f (y) + g(y), (1)
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FIG. 8.12. Disks positions and flow field visualization at t = 0.15, 0.2, and 0.3 (ρs = 1.5, ν = 10−2, h# =
1/384, $t = 5× 10−4). Wave-like equation treatment of the advection.

The various observations and comments done in Section 8.3.3 (for the sedimentation of

one disk) still apply to the present test problem (see Figs. 8.13–8.15). Actually, the costs

and numbers of iterations associated to the solution of the various subproblems are close,

although the two-disk simulation is a bit more expensive than the one-disk one, since it

FIG. 8.13. Histories of the x-coordinate (left) and y-coordinate (right) of the centers of the disks for ρs =
1.5 and ν = 10−2 (h# = 1/256, $t = 7.5× 10−4, solid lines; h# = 1/384, $t = 5× 10−4, dashed–dotted lines).

Wave-like equation treatment of the advection.

fiber direction that exists at each point of the heart wall. This fiber orientation is already accounted for in our
anisotropic model of the elasticity of the heart wall, and it will not be difficult in future work to generalize this
anisotropic elasticity model to include fiber-aligned anisotropic viscous effects. At present, however, we only
include the isotropic viscosity of the background fluid that is everywhere in an immersed boundary
computation.

When discretized, each of the structures of the model is described by a system of one-dimensional elastic
fibers: in the case of the valves, the fibers mainly correspond to passive collagen fibers; in the great vessels,
they correspond to smooth muscle tissue; and in the myocardium, they correspond to active muscle fibers that
possess time-dependent contractile properties. (As the Lagrangian mesh is refined, however, note that this dis-
crete representation approaches the continuous limit described above.) Although a complete description of the
elastic properties of these structures is beyond the scope of the present work, most of the forces generated by
the elasticity of the model heart are computed in the manner described in Sections 3 and 4, although the fiber
tension is determined differently. In particular, the elastic parameters of the fibers, such as the fiber stiffnesses
and resting lengths, vary both temporally (to simulate active, contractile muscle) and spatially (to model the
delay in contraction between the atria and the ventricles). Nonetheless, implementing the elastic properties
specified by the model requires no major changes to the presented numerical scheme because at each timestep
the elastic parameters are constant and known. Note that more complete descriptions of the model are avail-

Fig. 7. A prominent vortex is shed from the mitral valve leaflets and migrates to the interior of the left ventricle of the model heart during
atrial systole. Note that the present view is from the front of the model heart, so that the left ventricle appears on the right side of the
figure. The flow of blood within the heart is indicated by passive fluid markers. The present positions of the fluid markers are shown, and
attached to each marker is a dark tail that indicates the recent trajectory of that marker. A superimposed arrow indicates the direction of
fluid flow around the vortex. The fibers that comprise the model heart, including the muscular heart wall, the thin valve leaflets, and the
great vessels, appear in gray. Again, note that only a subset of the model fibers are displayed in each figure.
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Challenges
Numerical issues

high-pressure (all Mach number), high-order, conservative, low dissipation formulation
gas-liquid, high-order, conservative, stable formulation

requires DNS-accurate Lagrangian tracking of interface
stochastic (pdf) coupling for soot and possibly sprays
temporal and numerical discretization error control

Chemistry 
automatic mechanism reduction
are chemical mechanism time accurate in unstationary flames?
chemical parameters uncertainty effects

Thermodynamics
general equation of state
phase transition: evaporation and cavitation

Immediate challenge: high-pressure regime
Next 5-10 years: two-phase flow regime
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