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= Modeling Subsurface Reactive Transport
= CO, Sequestration
= Hanford 300 Area



tefemer Modeling Subsurface Processes

= Mass & energy conservation equations in porous and fractured media:
= Mmultiphase
= Mmulticomponent
= Multiscale

= Challenges
= Inability to fully characterize system
= How accurate is accurate enough?

= Upscaling: pore = lab = field
= Is volume averaging sufficient?

» In general a multiscale model is required at lab and field scales
(subgrid scale)

= Modeling multiscale processes

= New challenges is system characterization and computational &,
algorithms




testemes Multiscale Processes

= Represent system through multiple interacting continua with a single
primary continuum coupled to sub-grid scale continua.

= Associate sub-grid scale model with node in primary continuum
= 1D computational domain
= Multiple sub-grid model attached to primary continuum nodes
= Degrees of freedom: NXx N, X Npey X N,

E bulk continuum

macropore continuum | Field-Scale Grid Block
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LBM Applied to 3D Porous Media
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tefemer Hanford 300 Area
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wsflames Hanford 300 Area: Layered Hydrostratigraphy
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Materials

Unit 1 - Hanford

Unit 2 - Cold Creek Eolian
Unit 3 - Cold Creek Gravels
Unit 4 - Upper Ringald Mud
Unit 5 - Ringold EC Gravels

Unit 6 - Intermediate Ringold Overbank Deposits
Unit 7 - Ringold BD Gravels
Unit & - Lower Ringold Mud
Unit 9 - Basal Ringold Gravel
Unit 10 - Basalt

Inactive




Shaded 300 Area Uranium, June 1994

Shaded 300 Area Uranium, June 2005
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= 3D Domain: length and time scales
= field scale domain (—km)
= hourly river fluctuations, ~ 1000 year predictions
= fast flow rates (—5 km/y)

= Complex chemistry: Na-K-Ca-Fe-Mg-Br-N-CO,-P-S-CI-Si-U-Cu-H,0
(—15 primary species)

= Multiscale processes (um-m)

= Highly heterogeneous sediments
= fine sand, silt; coarse gravels; cobbles

= Variably saturated environment
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Columbia River Stage (m)
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20 day simulation with 1024 processor cores took 4 hours on Jaguar
135 x 250 x 60 grid (10m x 10m x 1m resolution)
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Primary continuum (o = primary fluid):
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,‘g“‘;;‘:s”ﬁ.gmHanford 300 Area: Projected Ultrascale
Modeling Requirements

= Uniform grid:
= Problem domain: 1500 x 2500 x 60 meters

= 900M grid nodes (spatial degrees of freedom)

= 10-20 chemical components (chemical degrees of
freedom)

= Local grid refinement through the use of unstructured
grids (or AMR) should reduce the number of unknowns
by many orders of magnitude and improve resolution



QuickTime™ and a
BMP decompressor

are needed to see this picture.
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Lok 3D Simulation of Geologic CO, Sequestration
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= Fingering phenomena results as supercritical CO, is injected into a reservoir
and dissolves into the aquifer formation brine

= Critical finger wavelength is inversely proportional to permeability and
predicted to be on the order of decimeters or smaller for a sandstone host
rock

» Spatial resolution of fingers is crucial for prediction of the rate of dissipation
of the supercritical CO, which may involve several thousand years depending
on the brine composition

= Ultrascale computing will be required to adequately resolve spatial scales

» Develop upscaling techniques to represent fingering
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SACROC 9M Node Grid (1200 m depth)

Scurry Area Canyon Reef Operators Committee
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SACROC [Cont.]

Scurry Area Canyon Reef Operators Committee

Oldest continuously operated CO, EOR site in U.S. beginning in 1972
= West Texas oil field
= 93 million tons CO, injected/38 million tons produced

Carbonate reef complex (limestone & shale)

Domain size: 4 km x 10 km x 200 m

Over 200 injection and extraction wells
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Potential petascale
computational problem
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225 x 10% metric tons CO,/year

Mark Person (unpublished,
Univ. Indiana, Bloomington)



eeftemes. Summary: HPC Challenges

s Large (—km) spatial scales
= Long simulation times (thousands of years)
s Multicomponent/multiphase systems

= Multiple length and time scales: multiple interacting
continua for representing multi-scale processes

= Need advances in solver and preconditioner algroithms
(multilevel solvers) for solving heterogeneous multiphase
systems to achieve weak scaling

= Load balancing with sub-grid model

= Need higher order finite volume methods to obtain positive
def. solutions with tensors and eliminate spurious grid
effects
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= Solve mass & energy conservation equations
s PFLOW: multiphase (CO,, H,0, Oll, gas)
= PTRAN: multicomponent reactive transport
= PFLOW and PTRAN sequentially coupled

= Finite Volume discretization
= Positive definite solution (solve for log )
= Logically structured grid

= Mercurial (Hg) code repository

= Open Source

= Parallel 1/0 using HDF5



iebaemes PELOTRAN: Strong Scalability
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Weak Scaling: 1000 grid cells per core/processor
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PFLOTRAN Results HDF: Catamount Vs CNL
(Kumar Mahinthakumar, 1.40E+04
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Need solvers and preconditioners that provide weak scaling
= Multilevel solvers
= physics based preconditioning

Need to restructure PFLOTRAN to handle multiple grids

Need to generalize conventional multilevel solvers:

= Mmultiphase systems with variable switching to account for phase
changes—or revise phase change approach to persistent variables

= heterogeneous systems with scale-dependent coefficients (e.g.
permeability)



‘Lsalamos  (5r1d Effects

1111111

=  SACROC logically structured grid with
equal Ax, Ay and variable Az

= Need higher order methods

= No known method that includes full
dispersion tensor and preserves positive
definiteness of solution
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*PFLOTRAN: Profiling using TAU

MatSolve SeqBAIJ MatMult_SeqBAIJ
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Factors limiting strong scaling

Wall-clock time (seconds)

Parallel dot-products (AllIReduce operations) limit strong scaling.
Keep in mind: Only 6144 unknowns per processor core at 4096 cores.

Block-Jacobi preconditioner loses effectiveness with more processors
(due to smaller subdomains)...

...but the effect on scalability is minor
(slow growth in BICGSTAB iterations)

Time spent in dot products per flow step Proportion of time spent in dot products
32 . . - - - . 0.45 . . - - - .
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High-resolution grids:
= Reduce discretization error for flow and transport (improved accuracy)
= Capture the effects of small scale-heterogeneities (e.g. sand lenses)
Increased biogeochemical complexity:
= Increased # of chemical components

= Increased # and sophistication of chemical reactions (computing power
to include more chemistry)

= Sub-grid scale geochemical model (multi-continuum formulation)
Unstructured grids:

= Alignment of grid cells with irregular stratigraphy (i.e. high-permeable
Hanford and low-permeable Ringold units

= Grid refinement in regions of interest (e.g. uranium source zone,
fluctuating water table)

Uncertainty analysis:

= Ability to simulate large numbers of realizations of stochastic
parameters on high-resolution grids

SciDAC & others Collaborations:
= PETSc, SAMRAI, Hypre, TAO, PERI, Zoltan, ParaView, Vislt
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