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Free Energy in biophysics and nanomagnetism
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Studying free energy in transition metal magnets
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Consider atomic degrees of
freedom {m,mo, ..., 7N}
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Realistic model or LDA/GGA With the density of states we would
based DFT calculation. In know the free energy at all

most cases E(T, M) ~ E(T = 0, M) temperature

Can we compute the density of states?



Metropolis Method Wand-Landau Method

Metropolis et al, JCP 21, 1087 (1953) Wang and Landau, PRL 86, 2050 (2001)

4 = /e_E[X]/kBTdX 7 = /W(E)e_E/kBTdE
Compute partition function anad If configurations are accepted with
other averages with probability 1/ all energies are visited

configurations that are weighted equally (flat histogram)
with a Boltzmann factor
Sample configuration where Boltz- 1. Begin with prior estimate,eq W'(E) = 1

mann factor is large. | N
2. Propose move, accepted with probability

1. Select configuration . , ,
Air= 1, W(E;)/W'(E
B, — Ejx] p = min{1,W'(E:)/W'(Ey)}
2. Modify configuration (move) 3. If move accepted increase DOS
By = Elxy] W'(Ef) = W'(Eg) x f f>1

3. Accept move with probability 4. lterate 2 & 3 until histogram is flat
Ay = min{1,e’F=Er)l 5 Reduce f — f =+/f and go backdto
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Generalization to continues models with
applications to magnetism, proteins, ...

Zhou, Schulthess, Torbrugge, and Landau, Phys. Rev. Lett. 96 120201 (20006)
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Metropolis Method Wand-Landau Method

7 = /e_E[X]/kBTdX Z = /W(E)e_E/kBTdE

Sample configuration space with probability
o~ Elx|/ksT 1/W(E|x])
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The main features of our model for FePt
Mryasov, et. al. Europhys. Lett. 86, 805 (2005)

Standard Heisenberg form with uniaxial anisotropy
E({m;}) = Z Jij oM aMj o — Zszz

1<7,x
Only Fe spins are free variables (induced moments on Pt)

Truncate exchange interaction at the surface

When all spins are aligned, energy has the standard
form E = KVsin*©




Test the model for bulk FePt (L=30) with standard
Metropolis Monte Carlo
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Curie temperature within about 10% of experiment
Ising type phase transition




Temperature dependent magnetization for
nanoparticles
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e Small effect on Curie temperature

o Magnetization suppressed in surface region
- EXxpected due to truncation of exchange interactions at surface

e Surface region does have structure
- Due to shape of nanoparticle (truncated octahedron)




Joint density of states and free energy

Numerically integrate density of states

F(M,,T)= —kBTln/W(MZ,E) exp(—FE /ksT)dE
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Wand-Landau Method

7 = / W(E)e E/FsTgE

Sample configuration space with probability

L/ W(Ex])
_— Eb _______
/ Samples all
energies
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Check validity of Wang-Landau method by estimating barrier
hight from Metropolis MC and fitting to KV sin” ©




Quantitative test for bulk FePt
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Temperature and particle size dependent
magnetic free energy barrier
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¢ Quantitative reduction of barrier hight in nanoparticles.

e [inear temperature dependence of barrier in
nanoparticles.




Deviation from idealized Stoner-Wolfarth
behavior.

Plot the deviation of the barrier hight from the
idealized Stoner-Wolfarth behavior KV sin” ©
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Incoherent modes are important in smallest
particles - large surface to volume ratio.




Summ

ary and outlook

e Temperature dependent free energy barrier in nanomagnets:
iImmediate relevance to data storage applications

® Direct computation of the joint density of states is possible
for systems with ~102 microscopic degrees of freedom

e Reli

able computation of temperature free energy barrier

e Preliminary model calculations show interesting nano-scale
effect that need to be investigated with first principles
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nods (LDA/GGA)
ook: combine Wang-Landau with ab initio DFT (LSMS)

| scale perfectly to 10° cores!

_/LSMS code will run at >80% of peak floating point performance




Wang-Landau method is NOT embarrassingly
parallel

Metropolis MC acceptance: A; , ; = min{1, P Ei=Es)Y

Generalized Wang-Landau acceptance:

Ai— ¢ = min{l, W'(E;, Xi)/W/(Efv Xr)}

I I I I global update of joint DOS at every WL step

random walker ZW\/

/ limited by latency ~ microseconds

local calculation of energy and observable ~ millisecond to minutes



Hybrid communication model

Not embarrassingly parallel!

ling gWL
nd histograms.

Communication
Monte Carlo ste

bandwidth requ Application at

the core of
Potentially simulation:
higher band- domain de-
width composed;
requirements turn into
In core of function call:
simulation. run in local

communicator

Very general as \Wang-Landau method can be used in conjunction with
any simulation method (DFT, MD/MM, spin models ...)



Strong scaling results for hybrid WL-LSMS code

128 Fe atoms and 800

Monte Carlo samples
running on Cray XT4
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Efficiency of gWL/LSMS prototype code

Efficiency (LIZ radius=12.5, Imax=3)
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Long simulation: subtract startup
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Extensions to the communication model

1. Take
advantage of
multi-core
nodes

2. Consider
and prepare
for fault
tolerance.

3. Parallelize
master -

asynchronous
WL algorithm?



