
Temperature dependent free 
energy barrier for magnetization 

reversal in nanomagnets
Thomas C. Schulthess
schulthesstc@ornl.gov

Computer Science and Mathematics Division & 
Center for Nanophase Materials Sciences

mailto:schulthesstc@ornl.gov
mailto:schulthesstc@ornl.gov


Collaborators

• Cheggang Zhou, Don Nicholson, Markus Eisenbach, and 
Paul Kent, Oak Ridge National Laboratory

• David Landau, University of Georgia, Athens GA

• Oleg Mryasov, Seagate Research, Pittsburgh PA

• Greg Brown, Tallahassee FL



Θ

!H
Θ

!M

Θ
!H

!M

Free Energy in biophysics and nanomagnetism
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! Cellobiohydrolase I
(CBHI)
" CBHI is a nanoscale

multidomain enzyme
- Cellulose binding module

(CBM)

- Catalytic domain

- Linker domain

" Exoglucanase
- Hydrolyzes crystalline

cellulose in a processive
manner (nanobiomachine)

– Liberates predominantly
cellobiose residues
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! Focus on the linker domain
" 27 residue

polypeptide

" 9 glycosylation
sites

- 21 mannose

molecules
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KV

particle volume
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material dependent parameter



Studying free energy in transition metal magnets

FePt

Consider atomic degrees of 
freedom {!m1, !m2, ..., !mN}

!M = 1/N
N∑

i=1

!mi
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Θ
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Θ

F (T, !M) = E(T, !M) − kBT lnW (E, !M)

Realistic model or LDA/GGA 
based DFT calculation. In 
most cases E(T, !M) ≈ E(T = 0, !M)

With the density of states we would 
know the free energy at all 
temperature

Can we compute the density of states?



Metropolis Method      Wand-Landau Method

Compute partition function and 
other averages with 
configurations that are weighted 
with a Boltzmann factor

Sample configuration where Boltz-
mann factor is large.

If configurations are accepted with 
probability 1/W all energies are visited 
equally (flat histogram)

4. Iterate 2 & 3 until histogram is flat

1. Select configuration

2. Modify configuration (move)

3. Accept move with probability

2. Propose move, accepted with probability

1. Begin with prior estimate, eg

3. If move accepted increase DOS

5. Reduce                              and go back to 1

Metropolis et al, JCP 21, 1087 (1953) Wang and Landau, PRL 86, 2050 (2001)

Z =

∫
e
−E[x]/kBT

dx Z =

∫
W (E)e−E/kBT

dE

W
′(E) = 1

Ei = E[xi]

Ef = E[xf ]

Ai→f = min{1, eβ(Ei−Ef )}

Ai→f = min{1, W ′(Ei)/W ′(Ef )}

W ′(Ef ) → W ′(Ef ) × f f > 1

f → f =

√

f



W (E, ξ)

W (E, M)

Generalization to continues models with 
applications to magnetism, proteins, ...

Heisenberg model:

!E. This criterion applies to both our kernel function
updates and the bilinear interpolation scheme [5]. A larger
!E explains why the error is smaller for L ! 5 in Fig. 4
than that for L ! 10. In case of L ! 10, the internal array
we used to store g"M;E# has an energy resolution of
0.0012, which is comparable to the bin size (0.001) of the
original WL algorithm we used for g"E#. Consequently,
they show errors of comparable sizes. The conclusion is
that the resolution in each macroscopic quantity must
increase as

!!!!
N

p
to maintain the accuracy in the numerical

integral, where N is the number of degrees of freedom.
Our second example is a simple protein model whose

ground state is a perfect helix. The model is a polymer
chain of fixed bond length and bond angle; its dihedral
angles are the only degrees of freedom. We use our algo-
rithm to calculate g""; E#, where " is the end-to-end dis-
tance (referred to as a reaction coordinate in Ref. [4]) and
we use the same parameters as in Ref. [17] where it was
originally studied. Figure 5 shows the JDOS and " as a
function of the pulling force P at different temperatures for
a chain of 30 atoms. A high energy cutoff is needed
because the Lennard-Jones (LJ) repulsion has no upper
bound. Because of the geometric constraints, the smallest
polygon that the chain can form is a hexagon, in order to
have a large LJ term. In this case, six bonds are replaced by
the radius of the repulsion potential. Stretching the rest of
the chain as much as possible, one can estimate that the
threshold length is about " ! 27. This threshold gives rise
to a clear shoulder structure in Fig. 5(a). ""P; T# is calcu-
lated in the same way as M"h; T# for the Heisenberg
ferromagnet. At low T and P ! 0, " is the length of the
helix, which behaves as a Hook spring for small pulling
forces. The free energy for each " (calculated with the
EXEDOS algorithm in Ref. [4]) can be obtained by inte-
grating g""; E#e$E=T over E directly. This example only
took about half an hour on a single CPU.

In summary, we use kernel function local updates and a
global update to extend the WL algorithm to efficiently
treat continuous systems and their JDOS. Our new strat-
egies have potential applications to many complex systems
with thousands of degrees of freedom. In particular, the

kernel function update benefits from the continuity of the
model; and the global update effectively drives the random
walker to unexplored areas, so that extreme values of
macroscopic variables can be searched. Compared to the
original WL algorithm, the global update saves about 90%
CPU time in our calculations. Recently, we have also
studied magnetic nanoparticles made of NiFe2O4 [18]
with our method presented in this Letter.
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research is supported by the Department of Energy through
the Laboratory Technology Research Program and the
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Division for Scientific User Facilities, and by NSF DMR-
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FIG. 5 (color online). (a) JDOS g""; E# of a chain with
30 atoms. (b) The end-to-end length " as a function of pulling
force P at different temperatures.

PRL 96, 120201 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
31 MARCH 2006

120201-4

Chain with 
torsional forces

Zhou, Schulthess, Torbrügge, and Landau, Phys. Rev. Lett. 96 120201 (2006)

magnetization

end-to-end distance



Metropolis Method         Wand-Landau Method

Sample configuration space with probability

Samples 
mainly regions 
around energy 
minima

Samples all 
energies 
equally 

Z =

∫
W (E)e−E/kBT

dEZ =

∫
e
−E[x]/kBT

dx

1/W (E[x])e
−E[x]/kBT



The main features of our model for FePt

FePt

Standard Heisenberg form with uniaxial anisotropy

Truncate exchange interaction at the surface
Only Fe spins are free variables (induced moments on Pt)

When all spins are aligned, energy has the standard 
form

Mryasov, et. al. Europhys. Lett. 86, 805 (2005)

E({!mi}) = −
∑

i<j,α

Jij,αmi,αmj,α −
∑

i

Kim
2

i,z

E = KV sin
2
Θ



Test the model for bulk FePt (L=30) with standard 
Metropolis Monte Carlo
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Temperature dependent magnetization for 
nanoparticles

R = 2.2 nm
2.2 nm
3.0 nm
30, bulk

• Small effect on Curie temperature
• Magnetization suppressed in surface region

- Expected due to truncation of exchange interactions at surface

• Surface region does have structure
- Due to shape of nanoparticle (truncated octahedron)



Joint density of states and free energy
W

E

Numerically integrate density of states

F (Mz, T ) = −kBT ln

∫
W (Mz, E) exp(−E/kBT )dE



Metropolis Method         Wand-Landau Method

Sample configuration space with probability

Samples 
mainly regions 
around energy 
minima

Samples all 
energies 
equally - 

Z =

∫
W (E)e−E/kBT

dEZ =

∫
e
−E[x]/kBT

dx

1/W (E[x])e
−E[x]/kBT

Check validity of Wang-Landau method by estimating barrier 
hight from Metropolis MC and fitting to KV sin

2
Θ
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FIG. 2: (color online) BW free energy of a nanoparticle with
R = 5 and 999 Fe spins at 200, 300,...,600K. The barrier is
higher at lower temperatures. Curves in the main plot have
been shifted vertically to reveal and compare the the barrier.
The inset shows the same curves before the vertical shift,
where the barrier is invisible in the original large scale.

the dominant path is the coherent one, then we expect
∆F (T ) ≈ K1(T ), which is actually the case we have seen.

The joint density of states g(E, Mz) has a shape simi-
lar to that of the Heisenberg ferromagnet presented in
Ref. [13]. However, due to the easy-axis anisotropy,
g(E, Mz) of a FePt nanoparticle has a shallow deficiency
(∂2g/∂M2

z > 0) at low energies. This shallow valley in
g(E, Mz) is responsible for the barrier in F (T, Mz). The
free energy of a nanoparticle at different temperatures
is shown in Fig. 2. F (T, Mz) varies from −1 × 106K to
−2 × 106 K in a temperature range from 200K to 600K,
but the barrier separating the double valleys is of order
104 K. To reveal and compare the barrier at different
temperatures, we have to shift the curves vertically in
Fig. 2. The barrier and the spontaneous magnetization
both vanish at about 600K, which is consistent with the
magnetization curve in Fig 1.

The free energy barrier for a bulk system of size L = 8
and 512 Fe spins are shown in Fig. 3, where we also com-
pare the results of the extended WL algorithm to the
results estimated from the histograms of MC simulations
at different temperatures. Both methods show a slight
curvature in the temperature dependence and the low-
temperature data obviously extrapolates to the T = 0
energy barrier, calculated by setting the system to ferro-
magnetic configurations with different orientations. The
agreement at low temperatures is due to the fact that
the switching process is dominated by coherent rotation
of spins there. At middle temperatures, the barriers from
the extended WL algorithm are slightly lower than those
from the histogram method, because the former sam-
ples the incoherent intermediate states. The free energy
barrier of the extended WL algorithm vanishes at about
650K, which is very close to the bulk Tc = 642.5K, which
was previously obtained with finite size scaling[16]. We
claim that the extended WL algorithm is a quantitatively
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FIG. 3: Free energy barrier of a bulk system with peri-
odic boundary conditions calculated by two different meth-
ods. The data point at T = 0 is the energy barrier. Both
data sets approach the T = 0 energy barrier at low temper-
atures, but at intermediate temperatures, the extended WL
algorithm gives a slightly lower free energy barrier.

correct method to calculate energy barriers.

To study the size and temperature dependence of the
free energy barrier of nanoparticles. We plot ∆F (T )/N
for several nanoparticles as a function of temperature in
Fig. 4. Free energy barriers estimated from equilibrium
Monte Carlo simulation are also plotted to compare with
results from the joint density of states. In both set of
data, the barrier linearly depends on temperature below
the transition temperature, while the solid symbols are
slightly below the corresponding hollow symbols every-
where. This small difference is an evidence that the mag-
nitude of the vector magnetization only changes slightly
during the switching process. Therefore, the switching
process can be viewed as a coherent rotation. Neverthe-
less, longitudinal fluctuation of the magnetization dur-
ing the switching process lowers the free energy barrier,
which is captured by the density of states calculations.
We can fit these curves with ∆F (T ) = ∆E(1−T/Tc(R)),
where Tc(R) is understood as the size-dependent transi-
tion temperature of the nanoparticles, and ∆E is the
energy difference (free energy difference) at T = 0. ∆E
is simply given by the energy difference between a fer-
romagnetic configuration lying in the x-y plane and the
ground state ferromagnetic configuration parallel to the
z axis, because the former is the ground state if the con-
straint Mz = 0 is imposed. Obviously, ∆F (T )/N for
relatively large nanoparticles quickly converges to the
bulk value. For smaller nanoparticles, the reduction in
∆F (T )/N seems to weakly depend on the temperature.
The observation of the coherent rotation of magnetiza-
tion and the spatial dependence of magnetization shown
in Fig. 1(b) both suggest that the highly ordered core
of the nanoparticle is responsible for the large free en-
ergy barrier that have been observed in experiments.[5]
Comparing the results on nanoparticles to those of bulk
systems in Fig. 3, we notice that the extra surface effect

Metropolis Monte Carlo

Quantitative test for bulk FePt

Exact value at T=0 (determined analytically)



Temperature and particle size dependent 
magnetic free energy barrier 
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• Quantitative reduction of barrier hight in nanoparticles.

• Linear temperature dependence of barrier in 
nanoparticles.



Deviation from idealized Stoner-Wolfarth 
behavior.
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Summary and outlook

• Temperature dependent free energy barrier in nanomagnets: 
immediate relevance to data storage applications

• Direct computation of the joint density of states is possible 
for systems with ~103 microscopic degrees of freedom

• Reliable computation of temperature free energy barrier

• Preliminary model calculations show interesting nano-scale 
effect that need to be investigated with first principles 
methods (LDA/GGA)

• Outlook: combine Wang-Landau with ab initio DFT (LSMS)

- will scale perfectly to 106 cores!

- WL/LSMS code will run at >80% of peak floating point performance



Wang-Landau method is NOT embarrassingly 
parallel

Metropolis MC acceptance: Ai→f = min{1, eβ(Ei−Ef )}

random walker 1

random walker 2

limited by latency ~ microseconds

local calculation of energy and observable ~ millisecond to minutes

global update of joint DOS at every WL step...

Generalized Wang-Landau acceptance:

Ai→f = min{1, W ′(Ei, Xi)/W ′(Ef , Xf )}



Hybrid communication model

Master node controlling gWL 
acceptance, DOS, and histograms.

Application at 
the core of 
simulation: 
domain de-
composed; 
turn into 
function call; 
run in local 
communicator

Not embarrassingly parallel!

Communication at every 
Monte Carlo step: low 
bandwidth required.

Potentially 
higher band-
width 
requirements 
in core of 
simulation.

Very general as Wang-Landau method can be used in conjunction with 
any simulation method (DFT, MD/MM, spin models ...)



Strong scaling results for hybrid WL-LSMS code

128 Fe atoms and 800 
Monte Carlo samples 
running on Cray XT4 
(Jaguar)



Efficiency of gWL/LSMS prototype code
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Extensions to the communication model

1. Take 
advantage of 
multi-core 
nodes

2. Consider 
and prepare 
for fault 
tolerance.

3. Parallelize 
master - 
asynchronous 
WL algorithm?


