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Abstract. Novel electron-ion collider concepts are a high priority for the long-term plans of the 
international nuclear physics community. Orders of magnitude higher luminosity will be 
required for the relativistic ion beams in such accelerators. Electron cooling is a promising 
approach to achieve the necessary luminosity. The coherent electron cooling (CeC) concept 
proposes to combine the best features of electron cooling and stochastic cooling, via free-
electron laser (FEL) technology, to cool high-energy hadron beams on orders-of-magnitude 
shorter time scales. We present δf particle-in-cell simulations of a CeC modulator, using the 
parallel VORPAL framework. We also present GENESIS simulations relevant to subsequent 
amplification of the electron wake in a high-gain FEL. 

1. Introduction 
Increasing the luminosity of hadron accelerators is important for advancing the fields of particle and 
nuclear physics. One method of achieving this goal is coherent electron cooling (CeC) [4], which 
involves Debye shielding of moving ions in a plasma with an anisotropic velocity distribution. An 
analytic solution has been developed for analyzing this case of Debye shielding for a Lorentzian 
velocity distribution [8]. Here we use this analytic solution to validate particle-in-cell (PIC) 
simulations of ion shielding in plasmas with isotropic and anisotropic Lorentzian velocity 
distributions. Having validated the simulation, we apply a more realistic Maxwellian velocity 
distribution to cases with two closely-spaced ions, showing that the electron response is linear and, 
hence, additive. 

1.1. Coherent Electron Cooling 
The primary cooling mechanism in a standard electron cooler is dynamical friction on the ions (see 
e.g., Ref. [1] and references therein). The modulator section of a coherent cooler would be similar to a 
standard cooler, but in this case dynamical friction becomes irrelevant and the key physics is the 
coherent density and velocity perturbations imprinted on the electron distribution via anisotropic 
Debye shielding of each ion [4]. 

Coherent electron cooling consists of two components in addition to the modulator: a free-electron 
laser (FEL) amplifier, and a kicker [4]. In the modulator, electron and ion beams copropagate at the 
same velocity such that the ions imprint a modulation on the electron density. Both beams have highly 
anisotropic velocity distributions such that σ𝑣𝑥,𝑦 » σ𝑣𝑧. 



 
 
 
 
 
 

We first consider the motion of a single ion in the beam reference frame. Electrons gather 
preferentially behind the ion, forming a cloud that shields the ion charge, with density dropping to the 
background level over several Debye lengths along each dimension. Since the transverse rms 
velocities exceed the longitudinal, the cloud resembles a pancake for a stationary ion. In the laboratory 
frame, the longitudinal dimension contracts by the beam's Lorentz factor γ0, so the pancakes can be 
very thin. 

After the modulator, the electron beam propagates through a high-gain FEL, which amplifies the 
pancake-shaped electron clouds that had formed in the wake of each ion, resulting in a longitudinal 
charge density variation with a period equal to the FEL wavelength. Each ion is phase shifted with 
respect to the electron beam such that copropagation in the kicker leads to an interaction with its own 
amplified electron wake, decreasing the relative velocity [4]. 

1.2. Debye Shielding 
In isotropic Debye shielding of stationary ions, the steady-state electric potential φ α 1

𝑟
 around the ion 

decays exponentially as exp �−𝑟
λ𝐷
�, where λD = �𝜖0𝜅𝑇

𝑒2𝑛𝑒
�1/2 is the Debye length [6]. 

However, this expression for shielding does not apply to the CeC case for two reasons: (1) the 
electron-ion interaction time is less than the plasma period, and (2) the electron beam temperature is 
highly anisotropic. Time-dependent analytical solutions for plasmas with Lorentzian velocity 
distributions are derived in Ref. [8]. In Sect. 2 we use this solution to validate particle-in-cell 
simulations of ion shielding in isotropic and anisotropic plasmas with Lorentzian velocity 
distributions. Having validated the simulation, we then consider a more realistic Maxwellian velocity 
distribution. 

1.3. VORPAL δf PIC Simulations 
The ion shielding simulations employ VORPAL's δf PIC algorithm, which uses particle weights to 
measure the perturbations away from an equilibrium state [9]. The δf PIC method provides significant 
computational advantages over conventional PIC computations. To obtain even moderate agreement 
with theory, conventional PIC simulations required volumes of 104 Debye cubes, with at least 
1,000 particles per cell. These correspond to simulations with approximately 107 mesh cells and 1010 
macroparticles, which took several hours to run on a supercomputer with 2,048 cores. By comparison, 
the δf PIC simulations shown in Sect. 2 typically required only 200 particles per cell, yielding better 
agreement and less particle noise, even with lower resolution. Simulations using 2048 cores on the 
Franklin supercomputer at NERSC typically require 90 minutes to simulate shielding for durations up 
to half a plasma period. 

2. Software Validation 
For the case of Debye shielding by electrons with a kappa velocity distribution with κ = 2 (i.e., a 
Lorentzian) [2], analytic results have been derived [8]. In this section we validate VORPAL δf PIC 
simulations for this case by comparing the results to these analytical predictions. 

Equilibrium Debye shielding around a single Au+79 ion produces an excess of ~79 electrons among 
~107 physical electrons in the relevant domain. Since the simulation domain is finite, the simulation is 
set up to allow a thermal flux of electrons to leave and enter the boundaries. Electrons near the 
boundaries that had just recently entered the simulation domain have errors in their positions and 
velocities, since they have only begun to experience the fields from the ion and other electrons. Hence, 
only the central portion of the domain is shown in the Figures 1–4. To obtain good agreement the post-
processing did not evaluate the perturbed electron charge within a few Debye lengths (typically 5) of 
the simulation domain edge. 

Figure 1 compares the local integrated shielding charge verses time for the linear analytical 
prediction and the VORPAL δf PIC simulation. In this case the electron velocity distribution is 
anisotropic such that vx = vy = 3vz (R = 3), where z is the longitudinal direction. The total perturbed 



 
 
 
 
 
 

electron charge that accumulates in a finite volume around the ion is expected to peak at half a plasma 
period, after which the oscillation amplitude dampens, as shown in Figure 2. The plasma with a 
Maxwellian velocity distribution exhibits oscillatory behavior similar to the Lorentzian case, but with 
different amplitude and phase. 

 

  
Figure 1. Longitudinal charge density 
perturbation in the vicinity of the Au+79 ion, for 
the case of a stationary ion in an anisotropic 
plasma with both Lorentzian and Maxwellian e– 
velocity distributions. 

Figure 2. Time evolution of the integrated e– 
charge enhancement in the vicinity of the Au+79 
ion, for the case of a stationary ion in an 
anisotropic e– distribution. The time scale is in 
units of plasma period. 
 

Good agreement between the VORPAL simulations and theory is maintained for moving ions. The 
simulations in the following plots show Debye shielding for anisotropic plasmas with the ratio of 
transverse to longitudinal velocity spread of R = 3. Figure 3 and Figure 4 show the shielding charge 
for a gold ion moving in both the longitudinal (z) and transverse (x) directions. In each case the ion is 
moving with a transverse velocity of T = 5.4 times the plasma's rms transverse velocity and Z = 0.6 
times plasma’s rms longitudinal velocity. We note that the Maxwellian and Lorentzian responses can 
differ significantly, as seen in Figure 4. 

 

  
Figure 3. Longitudinal charge density 
perturbation of a plasma in the vicinity of a 
moving Au+79 ion. 

Figure 4. Transverse charge density perturbation 
of a plasma in the vicinity of a moving Au+79 ion. 
 



 
 
 
 
 
 

The following quantities were varied to obtain good agreement of the δf PIC simulations and the 
theoretical prediction: domain width, number of cells per Debye length, number of particles per cell, 
and electron velocity range. The domain width ranged from 24λD to 48λD, and was sampled with four 
to eight cells per Debye length. The particles per cell ranged from 200 in most cases, to 800 for the 
faster moving ions. Modeling such cases also required increasing the electron velocity range from 
±5vrms to ±7vrms. 

3. Debye Shielding of Two Ions 
It is important for CeC that the plasma’s 
response to an ion beam be linear, meaning that 
the total response is approximately the 
superposition of responses to each ion. 
Otherwise individual ions will not be properly 
accelerated or decelerated (cooled) in the 
kicker. Our initial inquiries into this matter 
involve electron shielding simulations of two 
ions separated by different distances. Figure 5 
shows a case where plasma has an anisotropic 
Maxwellian velocity distribution, R = 3. The 
number of shielding electrons is essentially 
independent of separation distance; the 
variation was less than 2%. Hence, the response 
is linear. 

4. Free-Election Laser Amplification of the 
Electron Wake 

After the modulator, the electrons pass through 
an FEL, which amplifies the electron 
distribution and modulates it with a period 
equal to the FEL wavelength. Correct simulation of the coupling from modulator to FEL amplifier 
involves extracting bunching parameters and associated phases from the electron density histograms  
shown above in Sect. 2, and using them to 
properly modify the input electron distribution 
used by GENESIS [7], an FEL simulation code. 
We will present the details of such calculations 
in future work. 

As an intermediate step toward converting 
λf VORPAL outputs to inputs for GENESIS, 
we used GENESIS to simulate a λ0 = 700 nm 
FEL with an electron beam that had a non-zero 
bunching parameter b only in the leading 1% if 
its length. This bunching was sufficient to cause 
lasing via self-amplified spontaneous emission 
for bunching parameters as small as b = 10–10. 
Figure 6 shows that the FEL imparts a charge 
density oscillation on the electron beam. 

Using an algorithm based on Refs. [3] and 
[5], we found the bunching magnitude extracted 
from this signal at different positions in the FEL 
to agree fairly well with those computed within 
GENESIS. To verify correct bunching, we 

 
Figure 5. Transverse charge density perturbation 
of a plasma in the vicinity of two stationary Au+79 
ions separated by 10λD. Dotted line: theoretical 
prediction for a Lorentzian velocity distribution. 
 

 
Figure 6. Histogram of electron beam particle 
counts after propagating 60 meters in an λ0 = 
700 nm FEL, bin width = λ𝑜

2
. Inset: Optical power 

along FEL axis. 
 



 
 
 
 
 
 

employed an algorithm identical to the standard definition of bunching and method used in GENESIS: 
the average the electron ponderomotive phase in each λ0-wide slice of the electron distribution. Both 
the bunching magnitude and phases computed using this method agreed very well with the GENESIS 
calculations. 

5. Scaling of λf PIC Simulations on Many Processors 
Figure 7 shows the strong scaling of the 
simulation time for the λf PIC ion shielding 
simulations shown in Figures 3 and 4. 
Removing the ion (Z = 0) improved scaling 
slightly, as the reduced electron motion 
improved load balancing across MPI domains. 
Disabling file I/O, notably the output of large 
files containing charge and current densities, 
increased efficiency significantly to 92% of the 
linear scaling value for N = 4096 processors. 

Weak scaling efficiencies exceeded 100% 
for N = 16 to N = 1024 processors compared to 
an N = 1 reference, with a maximum of 114% 
for N = 1024. 

6. Conclusions 
VORPAL λf PIC simulations accurately model 
Debye shielding of both stationary and moving 
single ions in isotropic and anisotropic plasmas. The shielding response to multiple ions is linear. 
Since these simulations scale efficiently up to thousands of processors, it will be possible to model 
shielding of many ions, and hence characterize the modulator section of a CeC system. Initial FEL 
simulations suggest that the small electron density perturbations associated with Debye shielding can 
be amplified to create the electric field profiles required reduce relative ion velocities. Parallel 
computing will enable end-to-end simulations of future CeC experiments. 
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