

Recent progress in accelerator physics simulations with the
VORPAL code

P.H. Stoltz,¹ S.A. Veitzer,¹ C. Nieter,¹ J.R. Cary,¹ K. Amyx,¹ P. Messmer,¹
P. LeBrun,² P. Spentzouris,² J.F. Amundson,² Hong-Jun Kim,³ and Tim Tautges³
1Tech-X Corporation, 5621 Arapahoe Ave., Suite A, Boulder, CO, 80303
2Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510-5011
3Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439

E-mail: pstoltz@txcorp.com

Abstract. We discuss three recent accomplishments with the VORPAL code: (i) electron cloud
modeling of the Fermilab Main Injector, (ii) EBMesh, a new embedded boundary mesh
generation tool for finite difference grids, and (iii) a first implementation on a graphics
processing unit of the particle charge deposition algorithm for the electrostatic solver. For the
Main Injector electron cloud modeling, we show results for the rate of cloud accumulation and
saturation as a function of the secondary electron yield curve. Particularly we show that for a
secondary electron yield curve with a peak of 2.0 and above, the cloud reaches saturation in a
time shorter than the beam revolution time. For the grid generation capability, we show results
meshing a nine-cell Tesla-style cavity. For the graphics processing unit charge deposition
algorithm, we compare two techniques: a segmented sort and an atomic add. We show the
atomic add is advantageous for simulations with fewer particles per cell, but segmented sort is
advantageous for simulations with more particles per cell because of thread contention in the
atomic add algorithm. Tech-X Corporation, 5621 Arapahoe Ave., Suite A, Boulder, CO, 80303

1. Electron Cloud Modeling
Electron clouds are expected to affect the design of future high-brightness proton beam accelerators,
such as the proposed Project X at Fermilab and other accelerators to be used as muon sources and
neutrino factories. The buildup of electron clouds is a complex interaction between the material
properties of the beam pipe, the positive potential of the proton beam, and the configuration of
magnetic fields. Electrons can build up rapidly when initial seed electrons, caused by residual gas
ionization, are accelerated by the beam potential and impact the beam pipe walls. The cloud density
will typically saturate when new secondary electrons are sufficiently shielded from the beam potential
by the electron cloud. One promising mitigation technique is to coat beam pipe walls with materials
that yield fewer secondary electrons. Secondary electron yield curves are energy dependent, but a
main factor in terms of cloud buildup is the maximum of the secondary electron yield (SEY) curve.
We have performed simulations with the VORPAL code [Nieter04] to assess the effect of different
SEY curves on the buildup and time to saturation of electron clouds in the Main Injector. For these
simulations we considered the buildup in a dipole section of the accelerator, with two different
models, and with different curves for the SEY.

Figure 1 shows simulated electron cloud buildup for the different SEY models. In the cases of the
Furman-Pivi model [Furman2002] with a maximum SEY of 2.0 (red), and the Vaughan model
[Vaughan] with a maximum SEY of 3.6 (purple), the electrons build up to saturation quickly, in about
300 ns (just over 1/4 of the Main Injector revolution period). In the case of the Vaughan model with
maximum SEY of 1.8 (green), the growth is slower and does not reach saturation in the course of our
simulations. In the case of the Vaughan model and a maximum of 1.1 (blue), no growth is observed.
These numbers are consistent with the results of Furman [Furman], who also modeled the Main
Injector for a slightly different beampipe configuration (Furman determined a maximum SEY of 1.4
was the critical value). The fact that time to saturation is about the same for the cases where the
maximum SEY are 2.0 and 3.6 may reflect that above a certain value, the buildup is limited by the
space charge of the cloud itself, which partially screens the beam potential. We have reported
elsewhere further details on the dynamics of the electron cloud [Lebrun], including details on the
electromagnetic potentials and plasma wave frequencies.

Figure 1. Electron cloud buildup for different SEY models.

2. Improved Grid Generation
A challenge for finite-difference modeling is how best to represent complex curved geometries on a
Cartesian grid. A typical scenario is that researchers generate the geometry representing an
accelerating cavity (see the left-hand side of Figure 2 for example of such a cavity) using a computer-
aided design (CAD) tool, and the resulting file describing the geometry is in a CAD format. To embed
that complex geometry into a Cartesian mesh, one needs a rapid and robust algorithm for computing
information about the intersections of the Cartesian mesh with the object. For VORPAL, the

Figure 2. An example of a geometry imported by EBMesh (left) and the Cartesian mesh created
(right). The geometry is a nine-cell Tesla-style accelerating cavity. The resulting Cartesian mesh had
10.7 million cells (roughly 120 × 120 × 740). The meshing operation took 20 s in serial on the 3 GHz
Xeon CPU.

information required is not just which cells intersect the object, but also the side lengths from the grid
corners to the intersection points, the areas of the grid surfaces formed by those cut sides, and the
volumes interior to the object in the intersected cells.

To address these challenges, researchers at Argonne National Laboratory are developing the
EBMesh tool [Hjkim], which uses a ray-tracing technique to increase mesh generation performance. In
EBMesh, each mesh cell is distinguished as being inside, outside, or on the boundary of the input
geometry. This is determined by firing rays parallel to each of the three axes. The most
computationally expensive part of the embedded boundary mesh generation, the edge-geometry
intersection test, is performed for the group of edges on a fired ray line together. This decreases the
computational complexity of the method significantly, achieving CN2 log Nt scaling, where other
algorithms are typically CN3 log Nt (Nt is the number of triangles on the boundary and N is the number
of cells in each direction of the Cartesian mesh). In addition to the list of boundary cells, EBMesh also
produces edge-cut fraction information and volume cut fraction information for each boundary cell.
EBMesh can directly import various CAD-based solid model formats such as IGES, STEP and STL,
and can export in a variety of formats as well. However, to avoid the overhead of interacting through
files, EBMesh is linked as a library directly to VORPAL.

We show in Figure 2 an example of a geometry imported by EBMesh (left) and the Cartesian mesh
created (right). In this case, the geometry is a nine-cell Tesla-style accelerating cavity. The resulting
Cartesian mesh had 10.7 million cells (roughly 120 × 120 × 740). The meshing operation took 20 s in
serial on the 3 GHz Xeon CPU, excluding the time to import the geometry (importing the geometry
took an additional 48 s).

3. Electrostatic Charge Deposition on the GPU
A main challenge in developing electrostatic PIC algorithms for the GPU is the charge deposition
stage, in which particles update the eight nearest values of the deposition field (typically the eight
corners of the grid cell in which they are located). Nearby particles must update the same field values,

which requires careful handling of race conditions on the GPU. We have compared two solutions to
this problem, a segmented scan algorithm and an atomic add algorithm (see Figure 3).

Figure 3. Illustration of segmented scan and atomic add charge deposition algorithms. On the left, the
charge deposition corner weights (eight values in three dimensions) are calculated from sorted particle
positions. A prefix sum, segmented by cell index, is performed to calculate the cumulative corner
weights of multiple particles per cell. Finally, the resulting per cell weights are applied to the field, one
corner at a time to eliminate race conditions. On the right, the charge deposition corner weights are
applied directly to the charge deposition field via atomic add operations, significantly simplifying the
algorithm at the cost of introducing serialized memory accesses. This algorithm is only efficient on
newer Fermi-architecture GPUs.

In the first method, we perform a keyed sort (by cell index) on the particles every time step. Each
particle then writes its eight corner deposition weights to linear arrays, and we perform a segmented
prefix sum operation (segmented by cell index) on these arrays to calculate the cumulative deposition
weights in each cell. The global field is then updated one corner at a time with the values from the
scanned deposition weight vectors, thereby avoiding any race conditions. Segmented scans on a GPU
are of order (N/P)log(N/P) for vectors of length N and number of processors P (modern GPUs have a
value of P in the hundreds). Thus, a segmented scan parallelizes an otherwise serial operation.
Segmented prefix sum algorithms are widely-used in GPU programming [GPU], and we use the
implementation available in the open-source Cuda Data Parallel Primitives Library (CUDPP). The
keyed sort we use is also taken from the CUDPP library.

In the second method, we perform an atomic add, in which multiple threads update the same value
in memory in a thread-safe manner. The atomic add has only recently become feasible with the release
of the new NVIDIA Fermi™ architecture of GPUs, which adds some memory caching. Caching
allows updating the floating-point value of a specific location in memory in a thread-safe manner. This
capability then allows us to perform the charge deposition step in a single operation. Although atomic
operations are typically inefficient due to these serialized memory accesses, parallel charge deposition
algorithms that completely avoid thread contention (as in the segmented scan algorithm described
above) are so complex and require so much memory bandwidth that an algorithm that deposits charge
via the serialized (but cached) atomic updates can yield equivalent or better performance in many

cases. Furthermore, using atomic operations significantly reduces the lines of code required for such
an algorithm (in our case by nearly an order of magnitude).

Figure 4 shows the performance of these two algorithms compared to a CPU implementation for
varying numbers of particles per cell on a three-dimensional grid with twenty cells per direction. Due
to less code overhead, the atomic add algorithm outperforms the segmented scan for small numbers of
particles per cell. However, for large numbers of particles per cell, the performance of the atomic
deposition is nearly independent of number of particles (the performance at 10 particles per cell and
100 particles per cell only differ by ten percent). This is expected, as the atomic add algorithm does
result in competition to write to the same memory location, and this competition gets worse as there
are more particles in a cell.

Figure 4. Comparison of performance of a GPU charge deposition algorithm based on the segmented
scan and atomic add algorithms relative to a CPU implementation for varying numbers of particles per
cell. Due to less code overhead, the atomic add algorithm outperforms the segmented scan for small
numbers of particles per cell. For large numbers of particles per cell, the performance of the atomic
deposition is nearly independent of number of particles because it does cause competition to write to
the same memory location.

Acknowledgments
Part of this work was performed as part of the ComPASS SciDAC grant from the Department of
Energy (grant \#DE-FC02-07ER41499). The authors acknowledge the VORPAL development team.

References
[Nieter04] Nieter C, and Cary JR, 2004, J. Comput. Phys., 196, pp. 448–73.
[Furman2002] MA Furman and MTF Pivi, “Probabilistic model for the simulation of secondary

electron emission,” Phys. Rev. ST Accel. Beams, 5, 124404 2002.
[Vaughan] J.R.M. Vaughan, Multipactor, IEEE Trans. Electron Devices 35 1172, 1988.
[Furman] M. A. Furman, “HINS R&D Collaboration on Electron Cloud Effects: Electron-Cloud

Build-Up in the FNAL Main Injector,” CBP Technote-738, 2006.

[Lebrun] P. Lebrun, P. Spentouriz, J. Cary, P. Stoltz, and S. Veitzer, “Accurate Simulation of the
Electron Cloud in the Fermilab Main Injector with VORPAL,” IPAC 2010, Kyoto, Japan,
http://cern.ch/AccelConf/IPAC10/papers/tupd015.pdf.

[Hjkim] HJ Kim and TJ Tautges, EBMesh: An Embedded Boundary Meshing Tool, 19th International
Meshing Roundtable, in preparation.

[GPU] S. Sengupta, Mark Harris, Yao Zhang, and J.D. Owens “Scan Primitives for GPU computing,”
Graphics Hardware, pages 97–106, 2007.

