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Abstract. Core-collapse supernovae are worth simulating on leadership computing resources 
because they are the origin of many elements, are interesting targets for expensive 
observational programs, and provide valuable computational experience. The need to perform 
implicit neutrino transport addressing up to six dimensions of phase space makes simulations 
aimed at the explosion mechanism an exascale problem. The multiscale nature of the problem 
in space and time can be addressed with adaptive mesh refinement and implicit evolution. 
Several types of solvers—explicit and implicit, hyperbolic and possibly elliptic—must be 
deployed with operator splitting to address the multiphysics nature of the problem. While we 
have some ideas about how parallelism can be exploited, we look to applied mathematicians 
and computer scientists to work with us and provide libraries that deploy capabilities needed by 
our solvers on heterogeneous and communication-unfriendly computer architectures.  

1. Why Simulate Supernovae?  
Among all the applications of pressing practical importance facing the nation and the world, why 
should valuable leadership computing resources be spent on the simulation of supernovae? Practical 
questions are not the only ones that matter to us. Perhaps even more important—in the sense of having 
limited utility to anything else, and therefore having an intrinsic worth that answers to nothing 
‘higher’—are answers to questions relating to our origins and place in the universe.  

How the building blocks of our bodies and our environment, the chemical elements, came to be 
formed and spread through the universe is one such question. As the saying goes, we are stardust: 
many important elements, or nuclear species, are synthesized by the nuclear fusion that powers stars. 
But it is not enough to synthesize the elements; these must also be dispersed if they are to be 
incorporated into planets and people. For stars with masses between ∼0.8 Mʘ (where Mʘ is the mass 
of the Sun) and ∼8 Mʘ, this dispersal is with a whimper as they puff their chemically-enriched 
envelopes into the interstellar medium. This can result in very beautiful structures, known historically, 
if semantically inaccurately, as planetary nebulae. In other cases the element dispersal can occur with a 
bang—one that includes further element formation (or ‘nucleosynthesis’). Such an explosion is called 
a ‘supernova,’ which is shorthand for an ‘exceptionally bright new star.’ The peak optical luminosity 
of a supernova is comparable to that of its host galaxy containing billions of stars. SN 1987A is the 
most recent nearby supernova; it went off in the Large Magellanic Cloud, a small satellite galaxy to 
the Milky Way.  

There are two basic physical scenarios that lead to supernovae. A thermonuclear supernova occurs 
when a white dwarf (remnant of a star with mass M ≲ 8 Mʘ) accretes too much mass from a binary 



companion. Three thermonuclear supernovae have occurred in our Galaxy in historical times. A core-
collapse supernova occurs when the core of a star with M ≳ 8 Mʘ collapses at the end of several 
burning stages, releasing gravitational energy. There have also been three core-collapse supernovae in 
the Milky Way in historical times. Modern surveys confirm what the small-number statistics of our 
own recent Galactic history suggest: thermonuclear and core-collapse supernovae occur with 
comparable frequency.  

On a slightly more practical level, but still within the realm of purely scientific interest, core-
collapse supernovae are interesting targets for observational programs in which large public 
investments have been made. These include telescopes—both earthbound and spaceborne—that cover 
various ranges of the electromagnetic spectrum. Astronomical observations investigate such aspects as 
the launch of an explosion; neutron star mass, spin, magnetic field, and kick velocity; composition of 
the ejecta; and explosion morphology. Even more exciting would be the detection of nontraditional 
astronomical signals from a supernova in our galaxy. Neutrinos are ghostly particles that interact only 
very weakly with ordinary matter; they are emitted in a certain type of nuclear decay, and from hot and 
dense nuclear matter, including in copious amounts from core-collapse supernovae. Gravitational 
waves are tiny ripples in spacetime radiated from violent events in which high-density matter moves at 
close to the speed of light. Both of these types of signals are so weak that it takes truly heroic 
experimental efforts to detect them. But that same weakness of interaction means that they escape their 
sources comparatively easily, so that, unlike photons, they bring us observational information directly 
from the heart of the supernova.  

On an even more practical level, accomplishing core-collapse supernova simulations enlarges 
community experience in addressing several computational challenges of interest in other applied 
contexts. These include magnetohydrodynamics; reaction kinetics; particle transport; and treating all 
these in a multidimensional, multiscale, and multiphysics system.  

2. Why is the Core-Collapse Supernova Mechanism an Exascale Problem?  
Stars spend most of their lives burning hydrogen to helium in their cores. Stars with masses greater 
than 8 Mʘ continue to burn up to oxygen, neon, and magnesium, and those heavier than 10 Mʘ burn all 
the way up to iron group elements near the top of the nuclear binding energy curve. In the absence of 
core burning, electron degeneracy becomes the main source of pressure support. But once the 
electrons become relativistic they have nothing more to give. This is the basic physics behind the 
Chandrasekhar limit, and when the mass of the core exceeds it, dynamical collapse ensues.  

The collapsing interior divides into an inner core, in sonic contact with itself, and an outer core 
whose infall is supersonic. Collapse of the inner core halts when the nuclear equation of state stiffens 
above nuclear density. But the outer core has not heard the news that collapse has halted. A shock 
wave forms when supersonically infalling material slams into the inner core. The shock moves out, 
heating the material through which it passes, and eventually will give rise to the optical emission we 
know as a supernova once it travels thousands of kilometers to the optically thin outermost stellar 
layers.  

This does not happen right away, however. At around 150 or 200 km the shock stalls, due to a loss 
of pressure support, and becomes a ‘stationary accretion shock.’ This happens because of two 
enervating consequences of the high temperature of the shock-heated material: iron-group nuclei that 
fall through the shock are endothermically reduced to their constituent nucleons, and electron capture 
results in neutrino emission. The mechanism of shock revival—that is to say, the explosion 
mechanism—remains a subject of active investigation. But since the 1980s the delayed neutrino-
driven explosion mechanism has been a primary paradigm: beyond the so-called ‘gain radius,’ heating 
by neutrino absorption outweighs cooling by electron capture, and on longer timescales (hundreds of 
milliseconds) may re-energize the shock [1].  

Determining the heating and cooling rates that affect the fate of the shock requires neutrino 
transport. Deep inside the newly-born neutron star, where neutrinos are trapped and slowly diffuse 
outwards, their distribution is nearly isotropic. As they begin to decouple in the semitransparent 



regime between the proto neutron star and the shock their angular distribution becomes more and more 
strongly forward-peaked. This transition happens differently for different neutrino energies. 
Ultimately, therefore, knowledge of the neutrino heating and cooling rates relies on knowledge of the 
neutrino distribution functions: at every instant in time and at every point in space, we would like to 
know how many neutrinos there are with a given energy moving in a given direction. This requires 
implicit solution of the Boltzmann equation or something equivalent.  

All three spatial dimensions are important in core-collapse supernovae. Convection and related 
phenomena may occur in the proto neutron star, and there is convection in the region between the gain 
radius and the shock. Rotation and magnetic fields may also come into play. Aside from convection, 
rotation, and magnetic fields, it has been discovered in recent years that the stationary accretion shock 
is unstable. This stationary accretion shock instability, or SASI, may be responsible for phenomena 
previously attributed to rapid rotation of the progenitor star, including aspherical explosion 
morphology, pulsar spin, and magnetic field generation [2,3,4]. 

The high dimensionality of phase space—which, again, in its full glory consists of three spatial 
dimensions plus three momentum space dimensions—is, together with the need to perform implicit 
neutrino transport, most of what makes this an exascale problem. (Evolving a nuclear reaction network 
with many dozens of species at every spatial cell would also be overwhelming.) As an example, 
consider a very simpleminded estimate of how easily the inversion of dense blocks arising from 
momentum space coupling can exhaust exascale resources. Each dense block has Np rows and 
columns, where Np = NνNENϑN  is the number of momentum space bins arising from Nν neutrino 
species, NE energy bins, and NϑN  angle bins. Suppose the structure of the dense blocks can be 
exploited in such a way that their inversion can be solved in order Np
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operations rather than the Np
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operations that would be required by LU decomposition. There is one dense block for each of Nx 
spatial cells. Suppose this overall solve requires Nit iterations for each of Nt time steps. Then the total 
number of required flops goes like  

 

The wall time is  

 

where the efficiency εFLOP is the achieved fraction of the theoretical maximum FLOP rate RFLOP. 
Plugging possible numbers, we arrive at the figure of merit 

 

We see that exascale resources can be exhausted for several weeks for a single simulation.  
Management and analysis of supernova simulation output is expected represent its own set of 

challenges on exascale machines. Long time integrations of large-scale, high-resolution simulations 
describing physics on wide range of spatial and temporal scales result in massive amounts of data 
being written to disk at frequent time intervals for analysis and restart. (Our current suite of high-
resolution MHD simulations has produced hundreds of terabytes of simulation data, and is already 
posing challenges for post-simulation storage and data mining.) The additional physics required for a 
credible supernova model (i.e., relativistic gravity, neutrino momentum space, and nuclear kinetics) is 
expected to dramatically increase simulation data output. Our traditional (linear) operating mode of 
simulation execution followed by data analysis will likely have to be revised. Much of the expensive 
interaction between memory and disk may be reduced by carrying out basic visualization and analysis 
while simulation data is in memory, but initial simulations will explore new territory in supernova 
theory, and significant amounts of data is expected to be written and retained for post processing as 
well.  



Given these overwhelming requirements, ways have been found by several groups (see for instance 
[5,6,7,8,9,10] and references therein) to perform more tractable computations by reducing the 
dimensionality of phase space in various ways. Given the different possible ways of reducing the 
dimensionality of both space and momentum space, not to mention different physics implementations 
and numerical methods, there has not been complete convergence of simulation outcomes over time.  

The Oak Ridge/Florida Atlantic/North Carolina State collaboration, with which we are associated, 
has two major projects. One of them, CHIMERA [5], has recently seen explosions in axisymmetry 
with energy-dependent neutrino transport. A corresponding three-dimensional full multiphysics run 
with this code has also been started. The other major project of our collaboration, GenASiS, is 
ultimately aimed at addressing the full dimensionality of the neutrino transport problem, with 
reasonable intermediate steps.  

3. How Can the Multiscale Nature of the Problem be Addressed?  
Several things make a core-collapse supernova a multiscale problem. Perhaps the first and most 
obvious is that gravitational collapse changes the length scale by roughly a factor of 100. There are 
also critical surfaces that should be well resolved: the large density gradient at the proto neutron star 
surface; the shock; and interfaces between regions of different compositions.  

Then there is the matter of turbulent cascades to small scales, which can make a difference. Small-
scale turbulence may increase the dwell time of fluid elements in the ‘gain region,’ increasing their 
heating by neutrino emission. Moreover, the outcome of simulated magnetic field generation depends 
strongly on resolution. In the case of the magneto-rotational instability this is because the linear 
growth rate of unstable modes is inversely proportional to their wavelength. Another amplification 
mechanism operates in simulations we have performed with GenASiS [4]: turbulence tangles and 
stretches magnetic flux tubes until their thickness is comparable to the spatial resolution. Figure 1 
shows slices through two 3D MHD simulations that differ by a factor of two in resolution; the 
difference in the amount of yellow visually betrays the difference in magnetic field strength. The 
dependence of average magnetic field strength on resolution is illustrated more quantitatively in 
Figure 2, which shows the behavior expected of this simple geometric effect in 2D and 3D. These 
simulations are still unresolved even at 10243

 
on over 32,768 cores. (As an aside, we note that 

GenASiS magnetohydrodynamics scaling has now been pushed to 12803
 
on 64,000 cores, as illustrated 

in Figure 3.) 
 

Figure 1. Magnetic field magnitude at t = 1500 ms for models with cell width Δl ≈ 2.34 km (left 
panel) and Δl ≈ 1.17 km (right panel). The orientation of the plots is chosen so that the normal 
vector of the slicing plane is parallel to the total angular momentum vector of the flow between 
the PNS and the shock surface. 



 

 

Figure 2. Time-averaged rms magnetic field strength (Brms), 
versus time-averaged magnetic rms scale (λrms), in the ‘saturated’ 
nonlinear stage. Results are shown (in blue) for the axisymmetric 
2D models and (in black) for the 3D models. (The time-average 
extends from t = 500 ms to the end of each model.) The dotted 
blue and dashed black reference lines are proportional to (λrms) 
and (λrms)

2, respectively.  
 

 

Figure 3. Weak scaling behavior of GenASiS 
magnetohydrodynamics.  
 



The existence of disparate spatial scales, coupled with the high cost per spatial cell, motivates more 
efficient methods of crossing spatial scales than simply increasing unigrid resolution. Adaptive mesh 
refinement (AMR) is one primary means. One possibility is block-structured AMR [11]. In the context 
of explicit evolution this has the virtue of being able to deploy existing solvers on individual regular 
cell blocks. There are also efficiencies associated with the use of a predictable basic structure. Another 
possibility is cell-by-cell AMR with a fully-threaded tree [12]. This offers more fine-grained control 
over cell division and placement, which is a virtue when the cost per spatial cell is very high. It is not 
conceptualized around local explicit solvers, so that it might be more amenable to elliptic and implicit 
solvers which often are needed in a multiphysics context. We are interested in cell-by-cell AMR for 
GenASiS. Beyond AMR, we also would be interested in subgrid models of turbulence, and in 
particular turbulent MHD.  

Not being aware of a publicly available cell-by-cell refinement library, we undertook to develop 
this capability on our own. We have found it heavy going for a small application science team, but 
have made some progress. Figures 4 and 5 illustrate some of our initial efforts at cell-by-cell AMR 
with GenASiS.  

 

 

Figure 4. The mesh and its partitioning based on density gradient for a uniform-
density sphere; 3D view (upper left) and a 2D slice (upper right). Also shown are 
the gravitational potential as computed with our multigrid Poisson solver (lower 
left) and its error relative to the analytic solution (lower right).  
 

 



Figure 5. Two snapshots from a 2D shock tube problem illustrate the load rebalancing of 
our cell-by-cell AMR in a hydrodynamics context. Both the mesh and its partitioning (left 
panels) and density (right panels) are shown.  
 

We have been discussing spatial scales, but it must also be pointed out that the core-collapse 
supernova phenomenon is multiscale in time as well. This is handled by implicit evolution of neutrino 
transport and nuclear reaction kinetics.  

4. How Can the Multiphysics Nature of the Problem be Addressed?  
From the foregoing sketch of the supernova phenomenon we can see that ideally we would like 
simulations to cover a wide range of physics, which can be grouped under three main headings: the 
tangent bundle, the magnetofluid, and the neutrino distributions. The term ‘tangent bundle’ is a fancy 
way of saying ‘spacetime plus momentum space.’ Ideally we would like our representation of 
spacetime to include all three space dimensions, with good resolution on a wide range of length and 
time scales; we would like momentum space to include all three dimensions, with good resolution of 
energies and angles; and ideally self-gravity should be treated with general relativity. The treatment of 
magnetohydrodynamics must be able to handle shocks. It would be desirable to track nuclear 
composition using a wide range of species. An equation of state for nuclear matter at finite 
temperature in neutron-rich conditions is needed. Neutrino transport must be computed in diffusive, 
decoupling, and free-streaming regimes. Neutrino interactions with all fluid components, and with 
other neutrinos and antineutrinos, must be included. Neutrino flavor mixing should be included.  



Not surprisingly, these different physics pieces involve different types of equations, and 
correspondingly different kinds of solvers.  

In the case of gravity there are some options. If one stays with Newtonian gravity, which is not 
completely realistic, there is a single linear elliptic equation for the gravitational potential. One can 
stay with approximate relativity, which captures the enhanced nonlinear strength of relativistic gravity, 
by solving a set of nonlinear elliptic equations for a reduced set of metric components describing the 
curvature of spacetime [13]. The in-situ calculation of gravitational waves, however, requires full 
relativity; the most common formulation these days is as a set of nonlinear first-order hyperbolic 
equations with continuous solutions satisfying elliptic constraints [14,15]. If elliptic solvers are 
deployed, multigrid-style approaches seem to be an attractive option. For GenASiS we have worked 
on one such solver that uses a distributed FFT for the coarsest level and global sparse solves on the 
finer levels, as illustrated in Figure 4. If only the hyperbolic equations of full relativity are solved a 
number of methods can be used. High order solvers have been common because of the absence of 
discontinuities in the gravity variables and the presence of numerical instabilities, but our initial work 
on full general relativity in GenASiS has been only second order due to the expected availability of 
only a single layer of ghost cells in our cell-by-cell AMR scheme.  

A few different things are required by the magnetohydrodynamics. The main thing is a set of first-
order hyperbolic conservation laws—or technically, balance equations, since we have source terms 
from interactions of the fluid with gravity and neutrinos. The solenoidal constraint on the magnetic 
field must be respected, in addition to an algebraic constraint known as the equation of state (pressure 
as a function of density, temperature, and composition). Determination of the equation of state for 
finite temperature nuclear matter is a significant computational problem in and of itself. A reaction 
network for time evolution of nuclear abundances is also needed. Many methods have been developed 
to solve conservation laws. In GenASiS our initial choice is an explicit second-order finite-volume 
‘central scheme’, combined with the ‘constrained transport’ technique to automatically enforce the 
solenoidal constraint in the evolution of the magnetic field [16,17]. We have worked with tabulated 
equations of state for nuclear matter. Local nuclear reaction networks (one for each spatial cell), which 
must be implicit, have been deployed by our colleagues in CHIMERA but have not yet been put into 
GenASiS.  

For neutrino transport we have first-order hyperbolic integro-differential equations. In conservative 
form these feature a spacetime divergence, a momentum space divergence, and source terms with 
integrals over momentum space. Because of the wide range of time scales addressed by transport 
solvers that range from near-equilibrium diffusive to semi-transparent to nearly free streaming 
regimes, implicit evolution is a necessity. Past work in our group has used Newton-Raphson to address 
the nonlinear aspect. Inside each Newton-Raphson iteration is a linear solve. As alluded to previously, 
this involves dense blocks from momentum space couplings (arising from the integrals over 
momentum space). It also involves nearest-neighbor spatial couplings, which can be conceptualized as 
separate sparse matrices, one for every momentum space bin. Our initial strategy in GenASiS is to 
obtain a large amount of parallelism by separately inverting the dense momentum space blocks and 
sparse spatial matrices, and iterating these separate solves to fixed-point convergence.  

5. How Can the Expected Features of an Exascale Machine be Utilitized?  
Some expected features of exascale machines that have penetrated the consciousness of application 
scientists like ourselves include distributed memory (at least partially), multicore nodes, and 
heterogeneous processors (use of GPUs and so forth). The first two have been somewhat adapted to 
using MPI and OpenMP, but our use of these may have to change significantly as communication 
becomes increasingly expensive. The use of hardware accelerators such as GPUs is something of a 
brave new world. Nevertheless our colleagues working on CHIMERA have begun experimenting with 
harnessing GPUs in their implicit solves of nuclear reaction networks.  

At some level, awareness of and responsibility for these issues has to percolate all the way up to the 
application scientists. However we have to rely heavily on, and work together with, applied 



mathematicians and computer scientists to help us understand what might be possible and to build 
libraries that can handle many of these issues in often-needed solvers and kernels. Can what is needed 
be done at the exascale? Here is a list, with heavy emphasis on expected issues related to data non-
locality, of some needs of the several different physics solvers described above:  

 Domain decomposition, level-by-level; empirical determination of workload per cell for load 
balancing? (sparse point-to-point communication for prolongations and restrictions)  

 Nearest-neighbor data for explicit hyperbolic equation updates (sparse point-to-point 
communication overlapping with work)  

 Distributed FFT on 3D spatial domain (either parallel FFT, or transposes within slabs)  
 Distributed sparse solves over spatial domain (parallel solver libraries)  
 Fast inversion of dense blocks (local; use GPUs)  
 Fast local sparse spatial solves (local after transpose from space decomposition to momentum 

space decomposition; use GPUs)  
 Residuals, time step determination, global sums (reductions)  
 Synchronized evolution of the entire domain in time  

 
On this last point, we are aware that ‘synchronization’ is a bad word. If one were doing only explicit 
solves it would be possible to contemplate allowance for asynchrony outside causality cones, but with 
elliptic and especially implicit solves we have difficulty imagining any way around stepping the entire 
system forward in time. As far as we can tell, any ‘out of order execution’ will have to be confined to 
the solves within a single time step.  

As is already known from current experience (but can only be expected to get much worse), 
collectives—transposes and reductions, in terms of the items on the foregoing list—are the biggest 
challenge in terms of communication. It may be that non-blocking collectives could open up important 
new possibilities for overlapping work and communication. To take a very simple example, time step 
determination could be lagged one or two or a few steps, in order for evolution to continue a bit while 
a reduction proceeds in the background. Another example particular to radiation transport treating the 
full momentum space: exposure of an important opportunity for parallelism, namely separate local 
inversions of a sparse spatial coupling matrix for each momentum space bin, depends on transposing 
spatial decomposition into momentum space decompositions. Given non-blocking collectives, such a 
transpose (via All-to-Alls) could occur in the background while the naturally local dense block 
inversions are performed.  
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