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Abstract. Understanding the mechanisms and improving the efficiency of the hydrolysis of 
cellulose for the production of liquid biofuels is critical for establishing a sustainable energy 
future. The mechanism of action of cellulose-degrading enzymes is being illuminated through a 
multidisciplinary collaboration that uses molecular dynamics (MD) and hybrid quantum 
mechanics molecular mechanics (QMMM) simulations. This paper details our efforts to 
improve the efficiency of MD codes, as well as the addition of PM6 semiempirical hybrid 
QMMM functionality to such codes. Our efforts are extending the capabilities of MD codes to 
allow simulations of enzymes and substrates on large-scale HPC resources.  

1. Introduction 
Lignocellulose could potentially serve today as the dominant renewable biofuel source, capable of 
meeting the needs for a liquid transportation fuel, if it could be efficiently and economically 
depolymerized into its component glucose for microbial fermentations [1,2]. One major obstacle to the 
efficient and effective use of cellulose is the high resistance of crystalline cellulose to chemical and 
biological hydrolysis. 

Given the limited experimental methods available to probe complex enzymatic cellulose 
depolymerization at the molecular level, we are using improved MD and QMMM simulations to 
explore aspects of the questions outlined above. While other presentations at SciDAC 2010 from our 
larger collaborative research group detail specific carbohydrate and enzyme simulation results made 
possible by some of the code improvements, this paper focuses on improvements in the efficiency of 
AMBER [3] and CHARMM [4] for such simulations, and the addition of valuable new methods for 
use on current and future HPC hardware.  

While future efforts include developing specialized MD methods from scratch, the majority of the 
efforts to date involve improving two existing codes: AMBER and CHARMM. Developing a new MD 
code from scratch that includes the dozens of methods in the existing codes is not feasible, but 
improving the kernel of existing molecular dynamics engines (MDE) is tractable. Other computational 
codes besides AMBER and CHARMM exist for performing simulations of up to millions of atoms on 
as many as thousands of processors with some degree of scaling efficiency, namely, LAMMPS [5], 
Desmond [6], and NAMD [7]. However, these codes have some limitations and a limited number of 
sampling techniques. Many of the most valuable molecular modeling methods such as thermodynamic 
integration [8], free energy perturbation, pulling or steered MD, umbrella sampling [9], and QMMM 
[10,11] have been restricted to smaller molecular systems, or have not been implemented in the most 
scalable parallel algorithms. There is a great need for improving the scaling efficiency of MD 



 
 
 
 
 
 

 

programs and to migrate more complex simulation and sampling methods into highly scalable 
programs, as well as adding additional QMMM techniques to existing fast codes. Many of the 
necessary methods for studying the proposed mechanisms of cellulase enzymes and the cellulose 
substrate are available in CHARMM.  

2. CHARMM Code Modernization 
Modernization of the CHARMM software from Fortran 77 to Fortran 95 has allowed the adoption of 
modern coding practices, which enhance the program speed, allow better compiler optimization, allow 
the use of modern debuggers and analysis tools, and, allow programmers to more easily modify the 
code for current and future parallel algorithm improvement. In August 2008, several developers began 
migrating the CHARMM code from Fortran 77 to Fortran 95. The effort involved 600,000 lines of 
code and emphasized memory allocation and common blocks. The first Fortran 95 version of 
CHARMM was released to the wider development community in February 2010 as c36a4 [4]. 

Because dynamic memory allocation was not available in Fortran 77, CHARMM originally 
implemented a heap and stack using large global arrays of integers. These monolithic arrays tended to 
waste memory, and the variables in them were declared as integer offsets requiring type conversion. 
Furthermore, users of 64-bit Intel machines had begun to have conflicts between pointers and integers. 
The standard dynamic allocation facilities of Fortran 95 allow memory to be allocated more efficiently 
and referenced more simply. These changes also allow such tools as Valgrind memcheck [12] to detect 
array boundary violations and uninitialized values.  

The following modern coding practices were implemented: conversion of common blocks into 
modules; enclosure of some subroutines within modules, enabling compile-time checking of their 
argument lists; conversion of line continuations and comments from fixed-form to free-form syntax; 
elimination of obsolete constructs such as equivalence declarations, computed gotos, and arithmetic ifs 
when possible. Effort is ongoing to increase information hiding [13] by placing subroutines in the 
same modules as the variables they use. 

In order to keep bugs from accumulating, we have employed CruiseControl [14], a continuous 
integration [15] tool commonly used in commercial software development. Whenever a developer 
commits changes to version control, CruiseControl retrieves the current sources, builds an executable, 
runs the regression test suite, and notifies developers of any new test failures. A script converts the test 
results into a format resembling that of the JUnit test framework for which CruiseControl was 
designed.  

3. Implementation and Validation of the CHARMM Force Field in AMBER 
As part of ongoing efforts to maximize the computational efficiency of current cellulose modeling, 
support for the CHARMM force field has been implemented in one of AMBER's MDEs, PMEMD, 
which has improved serial and parallel performance. Careful verification that the CHARMM force 
field was being implemented correctly in AMBER's MDEs was required, and a suite of tests were 
constructed in addition to a common file format for the comparison of energies and forces between the 
two MDEs. 

A force field is defined by its specific potential energy equation and its specific set of associated 
parameters. It is independent of the MDE that it is expressed in. For a faithful reproduction of a force 
field that exists in a reference MDE, one needs to be able to reproduce identical total potential energy 
of the system and identical energy gradients for each atom. MDE attributes external to the force field 
(such as the thermostat, long-range electrostatic treatment, and non-bond cutoffs) must be controlled 
for a proper comparison. 

A comparison of energy and force output between the reference CHARMM simulations to 
PMEMD validated the correct implementation of the CHARMM force field in AMBER. Starting with 
version c36a2 of CHARMM, a command (frcdump) has been implemented which outputs the various 
force field potential energy contributions and the energy gradient of each atom. This formatted output 
was compared to that generated by the AMBER MDEs. The relative error in energy (kcal/mol) 



 
 
 
 
 
 

 

between CHARMM and PMEMD with the CHARMM force field for a test suite, as shown in 
Figure 1, was less than 10–13 kcal/mol for each of the various components of the total energy, such as 
bond, angle, dihedral angle, improper angle, electric, van der Waals energies. In other words, the error 
was near the floating point machine precision.  

 

 
 

 

Figure 1. The test suite for validation included, from left to right, trialanine peptide 
with 33 atoms, DHFR enzyme with 2489 atoms, and a cellulose crystal fiber with 
88,101 atoms solvated in TIP3P water. 
 

4. CHARMM Performance Improvements 
Profiling of performance and parallelization have been carried out on the current developmental 
version of CHARMM with the aim to optimize serial performance and parallel scaling. CHARMM 
presents the user with a range of algorithmic methods for the same calculation, which are controlled 
through the interplay of compile time and runtime keywords. With such diversity, we have explored 
the performance of the multiple available methods and the corresponding routines that are desirable 
for optimization efforts with the advanced profiling tools IPM [16] and TAU [17]. The testing strategy 
involved running a specific benchmark from the validation suite (Figure 1) over a range of builds and 
runtime options. 

As expected, TAU profiling identified that a major part of the serial time for each thread was spent 
in subroutines within the EWALD module that calculates non-bonded interactions. Surprisingly, these 
and other routines that have been laid out in a specific form to promote the generation of faster 
machine code (i.e., vectorization) do not perform significantly faster than the default routines. 
Specifically, the REWALD95() subroutine performs as well as REWALD95_SB() and slightly better 
than the “Expanded fast atom list nonbond routine.” This suggests that compilers are improving and 
the strategy of reordering code to suit the compiler's palate may be futile. Algorithmic changes are 
more likely to yield improvements. 

The use of lookup tables results in the fastest simulations [18], but the accuracy of the energy and 
forces within the tables needs to be investigated. Switching the table from its default single precision 
to double has not improved the accuracy. Future work to improve this may involve changing the 
interpolation method. A quadratic or cubic spline may improve the accuracy without compromising 
speed. 

Advanced parallel profiling with TAU confirmed that parallel scaling bottleneck in CHARMM is 
the particle mesh Ewald (PME) routines for calculating the non-bonded electrostatic terms at each 
time step. Our efforts are ongoing to redesign the core of this parallel algorithm.  

5. Addition of Advanced QMMM  
The development of advanced quantum mechanical (QM) methodologies for MD simulations of 
enzymes is essential to overcome the primary limitations associated with the use of classical molecular 
mechanics (MM) potential energy functions. This includes the ability to describe charge transfers and 
break covalent bonds and thus observe reaction events during simulations. In addition, QM methods 
require none or far less parameters than MM based approaches and can therefore be applied to proteins 
that employ co-enzymes and catalytic or structural metal centers which are typically not covered by 
traditional protein force fields. Because of far higher required time and lower parallel scaling 
efficiency of the QM Hamiltonian relative to MM, one often uses coupled QMMM potential based 



 
 
 
 
 
 

 

simulations [10,11,19], in which the reactive or structurally important part of the protein is described 
with a QM based potential while the surrounding protein and solvent region is treated with an MM 
potential. 

At present, semiempirical QM Hamiltonians based on the modified neglect of diatomic overlap 
(MNDO) approximation are the best compromise between numerical accuracy and computational 
effort for large scale biomolecular simulations. The new semiempirical hybrid QMMM 
implementation in AMBER [10] includes support for implicit solvent (generalized Born) simulations 
and for explicit solvent simulations under periodic boundary conditions via a QMMM compatible 
version of the PME approach. It makes use of a new automatic link atom approach for the treatment of 
the QMMM boundary, which does not introduce additional degrees of freedom and simplifies 
simulation setup. Serial and parallel improvements of the QMMM implementation in AMBER [10] 
have lead to a high efficiency of the code which, for an appropriately sized QM region of the order of 
100 atoms, allowing computational throughput that is comparable to pure MM simulations. With 
AMBER QMMM support for enhanced sampling techniques specifically targeted at biomolecules, 
including umbrella sampling [9] with complex restraints, thermodynamic integration (TI) [8] and 
nudged elastic band (NEB) [20], it is possible to study rare events such as conformational changes and 
enzymatic reaction mechanisms for large scale systems. 

The reliability and applicability of QMMM simulations have addressed with the implementation of 
a series of MNDO type Hamiltonians including special parameterizations for metal containing protein 
systems such as ZnB [21] for catalytic and structural zinc ions in protein environments. The PM6 [22] 
method stands out among earlier MNDO type Hamiltonians, the key difference being a modified core 
repulsion function with explicitly atom-pair based parameters which rectifies accuracy shortcomings 
and problems of transferability of atom based parameters. In addition, the PM6 parameters have been 
optimized for a large data set including biologically relevant molecules, which makes PM6 more 
suitable for biomolecular simulations than preceding methods. The PM6 Hamiltonian for all elements 
which do not require d orbitals has been made available with the release of version 1.4 of 
AMBERTools [23] and is implemented in the development version of AMBER 12 in a way that 
preserves the ability to run molecular dynamics in the NVE ensemble  

The QMMM functionality of AMBER has been made available as a stand-alone library, which will 
allow easy integration into other advanced MDEs like CHARMM. Work is under way for the 
inclusion of d orbital support for PM6 and other advanced MNDO type Hamiltonians to extend the 
applicability of the QMMM functionality to proteins containing hypervalent elements and transition 
metals. We are also planning to couple the ADF program [24], which shows good parallel scaling due 
to extensive use of numerical quadrature schemes, with the AMBER QMMM module to make it 
possible to use density functional theory (DFT) based QM potentials in MD simulations which provide 
better accuracy and reliability and a more general applicability than semiempirical methods. Problems 
of the applicability of QMMM MD simulations when solvent molecules enter or leave the QM region 
are addressed with ongoing work on the implementation of adaptive QMMM methods, which allow 
variable QM regions during QMMM MD simulations. 
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