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Abstract. Here we present an application of a 3D adaptive mesh refinement (AMR) tool to a 
stratospheric tracer advection in a spherical coordinate system enriched by a new v-scan 
routine which allows conservation of the vertical integral of meteorological variables. Until 
now 3-D AMR tools did not take into account the separate tracking of vertical integrals. The 
latter is crucial to the atmospheric studies where refinement and coarsening routines in the 
vertical direction change the grid resolution of atmospheric pressure and geopotential height. 

1. Introduction  
Previously, mesh adaptation was applied to different representations of the Navier–Stokes equations. 
First, Skamarock et al. (1989) and Skamarock and Klemp (1993) applied their adaptive grid 
techniques for 3D limited-area models in Cartesian coordinates. Later, Behrens (1998) applied AMR 
techniques with an adaptive grid to a shallow water model in Cartesian coordinates while Hess (1999) 
used a grid based on a block-structured data layout. Bacon et al. (2000) and Boybeyi et al. (2001) 
formulated an adaptive non-hydrostatic regional model based on unstructured, triangulated grids with 
rotated Cartesian coordinates. Later, this model was used within a formulation with a spherical 
geometry (Gopalakrishnan et al. 2002, Bacon et al. 2003). There are a few shallow water models with 
statically adaptive grids developed using a spherical geometry (Ruge et al. 1995, Fournier et al. 2004, 
Barros and Garcia 2004). The dynamic AMR methods for shallow water models in spherical geometry 
were introduced by Jablonowski (2004) and Lauter et al. (2007). Most mesh adaptation methods were 
developed for models with numerical representation based on the finite-volume class of numerical 
schemes, and thus they all had desirable properties such as conservation and monotonicity.  

In this paper we apply AMR methods to the shallow water equations in a spherical geometry with a 
Lagrangian vertical coordinate (Jablonowski et al. 2006, Penner et al. 2007). It uses the MPI-based 
communication library (Adaptive Block library for Locally Cartesian Topologies, ABLCarT) to 
control grid adaptation, particularly in the horizontal x-y direction (Oehmke 2004). The main 
requirement for the block structure in the library is that every block consists of the same number of 
grid cells no matter what their actual spatial size, which is consistent with the needs of the finite-
volume approach. In this paper we use the 3D version of ABLCartT, enriched by a new functionality 
that allows conservation of the vertical integral of meteorological variables. 

2. Vertical Mesh Adaptation. 
Previously ABLCarT, in its 2D formulation, was used in a dynamical core that adapted its grid 
resolution (either dynamically or statically) in the horizontal direction (Jablonowski et al. 2006, 
Oehmke et al. 2008). From the library’s viewpoint the model’s computational grid is viewed as a 
collection of individual blocks that are independent data units. Each block is a rectangular unit with 
additional ghost cell regions around its boundaries. Thus, the information from adjacent blocks is 



 
 
 
 
 
 

shared to allow computations requiring information from a block’s neighbors. A choice of four ghost 
cells in each direction satisfies the requirements of the parabolic piecewise method (PPM) solution 
technique, widely used in atmospheric science. All ghost cells are at the same resolution as the parent 
block. The flow solver is individually applied to all blocks within the grid before ghost cells are 
updated.  

Previously the library was solely applied in the horizontal direction so that the entire vertical 
column was contained in a single block. However, the spherical grids used to represent phenomena on 
Earth often need to treat the vertical dimension differently than those in the horizontal direction. For 
example, atmospheric pressure at a point is determined by the integral of the atmospheric mass above 
it, and thus is based on calculations that need to be sequenced in a particular order along a specific 
integration path. Further, each value along the integral is needed to determine the pressure at each cell, 
not just those at the bottom. This requires that variable information be sent top-down from each 
adaptive block to the blocks directly below (or above, in other cases), and this must be done (logically) 
sequentially above each point on the sphere, though it can be done in parallel across all surface points. 

To perform vertical integration we have developed a vertical scan operation (v-scan) in ABLCarT, 
which allows computing along vertical paths in the correct order across blocks transparent to their 
resolution and processor location. To use v-scan the user specifies how the integration (summation) is 
to be performed in each block, and what information is passed between the blocks, while the library 
ensures that the operations are performed in the correct order, no matter where the blocks are located. 
In computer science a scan operation is normally used to describe an operation on a single vector 
(vertical cells above a point on the sphere) rather than on many such vectors in parallel. The ABLCarT 
performs the v-scan in strict sequential order, so there is no assumption that the operation be 
commutative or associative.  

The 3D refinement involves a large increase in the complexity of the code, but its modular design 
allows this complexity without extensively altering the user’s interface. Data access functions hide 
lower level implementation details, and adaptation modules are constructed so that each type of 
change to a block is handled separately and transparently to processor location, allowing the developer 
to concentrate on one neighbor interaction at a time. The user interfaces are encapsulated so that the 
library functions such as sphere creation, communication, adaptation, etc., work similarly on 3D and 
2D spherical shells. 

3. The Stratospheric Tracer Advection 
The Brewer-Dobson circulation (BDC) in the stratosphere is a prominent feature of the atmospheric 
dynamics, which within the stratosphere (10–50 km) carries trace gases from equator to pole. We use 
an advection test (Zubov et al. 1999) which imitates the BDC with prescribed horizontal and vertical 
winds. The simplicity and transparency of the test enable us to check whether the model’s 
interpolation subroutines that are “wired” into the Lagrangian vertical transport are not distorted by the 
v-scan, and that communication of all of the needed variables between the blocks in both the 
horizontal and vertical directions during grid adaptation is correct.  

The prescribed circulation has a closed cell in each hemisphere, which is anti-symmetrical about 
the equator. The winds are set to zero at the poles and on the upper and lower boundaries, thus the 
model domain is closed to transport and the total mass of a conservative species should not change in 
time. The initial species distribution was prescribed to be constant within the rectangle between 
32.5°S(N) to 12.5°S(N) in latitude and 19.75 km to 25.75 km in height, with a mixing ratio of 
1.6 ppmv, and zero everywhere else. Initially, the 10–50 km vertical domain of the model was 
subdivided into 0.5 km-thick layers, and the 90S-to-90N latitudinal domain was subdivided into 5° 
steps. The time step, Δt was set to be 10,041 s (2.8 hr), which satisfies the Courant-Friedrich-Levy 
(CFL) criterion. The tracer makes one revolution around the center of the circulation cell in about 3 to 
4 months.  

We performed a few “adaptive runs” using the ABLCarT library. First, we have started with the 
initial resolution of 40 (levels) and 72 latitudes and used 2 levels of dynamic refinement (40 × 72 × 2) 



 
 
 
 
 
 

by applying a prescribed threshold value of 10–15 ppmv on the concentration of the tracer in a grid cell. 
Figure 1 presents the adaptation of the tracer advection at various time steps. Then, we compared the 
adaptive run with a static high resolution run of 160 vertical levels and 288 points in the latitudinal 
direction (160 × 288 × 0). Also, we compared our results to an adaptive run with an initial resolution 
of 80 vertical levels and 144 latitudinal points with one level of refinement (80 × 144 × 0). We found 
that with the respective initial tracer distribution for the adaptive and high resolution runs, the integrals 
of the tracer in the horizontal and vertical directions in all three runs correspond to each other, 
showing that the adaptive transport has the same accuracy as the high resolution run. 

 

 

 

Figure 1. The tracer distribution at different times. Clockwise: days 1, 10, 25, and 
100. The wire shows the refinement levels. 

 
One of the important and very favorable aspects of the adaptive model simulation is that accuracy 

comparable to the static high resolution run can be obtained in less than half the computer time. 
Furthermore, depending on the specific problem, dynamic refinement could reduce the overall 
computer time by even more, e.g., if the problem required even higher levels of refinement. Similar 
reductions are realized in the memory required.  

4. Conclusions 
We have implemented and tested the three-dimensional parallel adaptive block mesh library 
(ABLCarT) within the dynamical core of a spherical model with a vertical Lagrangian coordinate. The 
introduction of a new vertical adaptation feature (v-scan) to the library was a challenging task due to 
the sequential nature of the vertical atmospheric calculations along a specific integration path. This 
introduces new geometric configurations of adjacent blocks with differing resolution and the 
concomitant numerical conservation equations. Applying the ABLCarT with v-scan to a pure 
advective tracer transport test, we demonstrated that the dynamical mesh adaptation works properly, 
and gives results equivalent to the refined non-adaptive case.  
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