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Abstract. With petascale systems already available, researchers are devoting their attention to 
the issues needed to reach the next major level in performance, namely, exascale. Explicit 
message passing using the Message Passing Interface (MPI) is the most commonly used model 
for programming petascale systems today. In this paper, we investigate what is needed to 
enable MPI to scale to exascale, both in the MPI specification and in MPI implementations, 
focusing on issues such as memory consumption and performance. We also present results of 
experiments related to MPI memory consumption at scale on the IBM Blue Gene/P at Argonne 
National Laboratory.  

1. Introduction 
We have already reached an era where the largest parallel machine in the world has close to 300,000 
cores (the IBM Blue Gene/P at J¨ulich Supercomputing Center). Table 1 shows the top five largest 
parallel machines in terms of number of cores in the latest (June 2010) edition of the Top500 list [31]. 
These machines range in size from 150,000 to 300,000 cores. The most commonly used model for 
programming large-scale parallel systems today is MPI, and in fact, all the systems in Table 1 use MPI 
implementations that are derived from MPICH2 [23].  

Although MPI runs successfully today on up to 300,000 cores, future extreme-scale systems are 
expected to comprise millions of cores. These systems may have several hundred thousand “nodes” 
(Figure 1), and each node itself may have large numbers (hundreds) of cores. The cores may comprise 
a mix of regular CPUs and accelerators such as GPUs, as illustrated in Figure 2. Many researchers and 
users wonder whether MPI will scale to systems of this size, or what is required to make scale MPI to 
this  level.  Furthermore, at exascale, MPI is likely to be used as part of a “hybrid” programming  model  

 

Table 1. Top five machines with the largest number of cores in the  
June 2010 Top500 list [31]. 

 



 
Figure 1. Future extreme-scale platforms with hundreds of 
thousands of nodes, each node with hundreds of cores.  

 
(MPI+X), much more so than it is today. In such a model, MPI will be used to communicate between 
address spaces in conjunction with some other “shared memory” programming model (such as 
OpenMP, UPC, CUDA, or OpenCL) for programming within an address space. In other words, MPI 
and MPI implementations will need to support efficient hybrid programming. In this paper, we discuss 
the issues of scaling MPI to exascale, in terms of both what is needed in the MPI specification and 
what is needed from MPI implementations.  

2. Scaling MPI to Exascale  
Although the original designers of MPI were not thinking of exascale, MPI was always designed with 
scalability in mind. For example, a design goal was to enable implementations that maintain very little 
global state per process. Another design goal was to require very little memory management within 
MPI; all memory for communication can be in user space. MPI defines many operations as collective 
(called by a group of processes), which enables them to be implemented scalably and efficiently. 
Nonetheless, examination of the MPI standard reveals that some parts of the specification may need to 
be fixed for exascale. Section 3 describes these issues. Many of the issues are being addressed by the 
MPI Forum for MPI-3.  

The main factors affecting MPI scalability are performance and memory consumption. A 
nonscalable MPI function is one whose time or memory consumption per process increase linearly (or 
worse) with the total number of processes. For example, if the memory consumption of 
MPI_Comm_dup increases linearly with the number of processes, it is not scalable. Similarly, if the 
time taken by MPI_Comm_spawn increases linearly or more with the number of processes being 
spawned, it indicates a nonscalable implementation of the function. Such examples need to be 
identified and fixed in the specification and in implementations. The goal should be to use constructs 
that require only constant space per process.  

From an implementation perspective, the main requirement is that consumption of resources 
(memory, network connections, etc.) must not scale linearly with the number of processes. Since 
failures are expected to be common because of the large number of components, the implementation 
also needs to be resilient and tolerant to faults. Fault tolerance is needed from all levels of the 
stack—hardware, system software, and applications—and the MPI library must play its role. Since 
hybrid  programming is likely to be common at exascale,  the  MPI  implementation  must  also 
efficiently support concurrent communication from multiple threads of a process. In addition, the MPI  

 



 
Figure 2. Many cores on a node. 

 
implementation must provide excellent performance for the entire range of message sizes and for all 
MPI functions, not just simple latency and bandwidth benchmarks. In other words, there should be 
fewer performance surprises. 

We discuss all these issues in further detail in the following sections.  

3. Scalability Issues in the MPI Specification  
Below we discuss aspects of the MPI specification that may have issues at extreme scale.  

3.1. Sizes of Arguments to Some Functions  
Some MPI functions take arguments that are arrays of size equal to the number of processes. An 
example is the irregular or “v” (vector) version of the collectives, such as MPI_Gatherv and 
MPI_Scatterv. These functions allow users to transfer different amounts of data among processes, 
and the amounts are specified by using an array of size equal to the number of processes. Using arrays 
that scale linearly with system size is nonscalable. An extreme example is the function 
MPI_Alltoallw, which takes six such arrays as arguments: counts, displacements, and datatypes 
for both send and receive buffers. On a million processes, each array will consume 4 MiB on each 
process (assuming 32-bit integers), requiring a total of 24 MiB just to call the function 
MPI_Alltoallw (i.e., just to pass the parameters to the function).  
 



 
Figure 3. Time for doing a 0-byte alltoallv on IBM BG/P 
(no actual communication takes place). 

 
Furthermore, an MPI implementation is forced to scan most of these arrays to determine what data 

needs to be communicated. On large numbers of processes, the time to read the entire array itself can 
be large, and it increases linearly with system size. This is particularly harmful in cases where a 
process needs to communicate with only a small number of other processes. For example, Figure 3 
shows the time for a 0-byte MPI_Alltoallv on an IBM Blue Gene/P. No actual communication 
takes place since it is specified as 0 bytes. The time taken is just for each process to scan through the 
input array to determine that no communication is needed. As the number of processes increases, this 
time itself becomes significant. The MPI Forum is discussing ways to address this problem in MPI-3 
[19], such as by defining sparse collective operations. A concrete proposal has been put forth in [13].  

3.2. Graph Topology  
MPI allows users to define virtual process topologies that express the communication pattern in the 
application. This feature in turn provides the implementation an opportunity to map the processes to 
the underlying system in a way that minimizes communication costs. Two types of virtual topologies 
are supported: a Cartesian topology and a general graph topology. The graph topology, which has 
existed since the first version of MPI, is one of the most nonscalable parts of the standard. It requires 
that each process specify the entire communication graph of all processes, not just its own 
communication information. The memory required for the purpose would clearly make it unusable on 
an exascale system. Other limitations of this interface are discussed in [32].  

Thankfully, this problem has already been fixed in the latest version of the MPI Standard, MPI 2.2 
[18]. Two new functions, MPI_Dist_graph_create and MPI_Dist_graph_create 
_adjacent, are defined that allow the user to specify the graph in a distributed, memory-efficient 
manner. However, the old interface is still available; and unless applications using the old interface 
make the effort to switch to the new interface, they will encounter scalability issues at large scale [12].  

3.3. All-to-all Communication  
MPI defines functions that allow users to perform all-to-all communication. All-to-all communication, 
however, is not a scalable communication pattern. Each process has a unique data item to send to 
every other process, which leads to limited opportunities for optimization compared with other 
collectives in MPI. This is not a problem with the MPI specification but is something that applications 
should be aware of and avoid as far as possible. Avoiding the use of all-to-all may require applications 
to use new algorithms.  



3.4. Fault Tolerance  
On exascale systems, the probability of failure or some other error in some part of the system is 
expected to be relatively high. As a result, greater resilience against failure is needed from all 
components of the software stack, from low-level system software to libraries and applications. The 
MPI specification already provides some support to enable users to write programs that are resilient to 
failure, given appropriate support from the implementation [11]. For example, when a process dies, 
instead of aborting the whole job, an implementation can return an error to any other process that tries 
to communicate with the failed process. The application then must decide what to do at that point.  

However, more support from the MPI specification is needed for true fault tolerance. For example, 
the current set of error classes and codes needs to be extended to indicate process failure and other 
failure modes. Support is needed in areas such as detecting process failure, agreeing that a process has 
failed, rebuilding a communicator in the event of process failure or allowing it to continue to operate 
in a degraded state, and timing out for certain operations such as the MPI-2 dynamic process 
functions. A number of other researchers have studied the issue of fault tolerance in MPI in greater 
detail [4, 9, 14]. The MPI Forum is actively working on adding fault-tolerance capabilities to MPI-3 
[20].  

3.5. One-Sided Communication  
Many applications have been shown to benefit from one-sided communication, where a process 
directly accesses the memory of another process instead of sending and receiving messages. For this 
reason, MPI-2 also defined an interface for one-sided communication that uses put, get, and 
accumulate calls and three different synchronization methods. This interface, however, has not been 
widely used for a number of reasons, the main being that its performance is often worse than regular 
point-to-point communication. The culprit is often the synchronization associated with one-sided 
communication. Another limitation is the lack of a convenient way to do atomic read-modify-write 
operations, which are useful in many parallel algorithms. Other issues with MPI one-sided 
communication are discussed in [3]. The MPI Forum is considering ways to fix these problems in 
MPI-3 [22].  

3.6. Representation of Process Ranks  
Another nonscalable aspect of MPI is the explicit use of lists of process ranks in some functions, such 
as the group creation routines MPI_Group_incl and MPI_Group_excl. While more concise 
representations of collections of processes are possible (for example, some group routines support 
ranges), the use of this sort of unstructured, nonscalable enumeration in some functions is problematic. 
Eliminating the explicit enumeration should be considered as an option for large scale.  

4. MPI Implementation Scalability  
MPI implementations must pay attention to two aspects as the number of processes is increased: 
memory consumption of any function and performance of all collective functions (not just the 
commonly optimized collective communication functions but also functions such as MPI_Init and 
MPI_Comm_split). We discuss some specific issues below.  

4.1. Process Mappings  
MPI communicators usually contain a mapping from MPI process ranks to processor ids. This 
mapping is often implemented as an array of size equal to the number of processes, which enables 
simple, constant-time lookup. Although convenient and fast, this solution is not scalable because it 
requires linear space per process per communicator and quadratic space over the system. To alleviate the 
problem, as a first step, communicators with the same process-to-processor mapping can share mappings. 
For example, if a communicator is duplicated with MPI_Comm_dup, the new communicator can share the 
mapping with the original communicator. (The MPICH2 implementation already does this.) 
 



 
Figure 4. Maximum number of communicators that could 
originally be created with MPI Comm dup on IBM BG/P 
for varying numbers of processes.  

 
In general, however, there is a need to explore more memory-efficient mappings, at least for 

common cases. Simple (and very restricted) solutions within the context of Open MPI were considered 
in [5]. A more general approach could be based on representations of mappings by simple linear 
functions, ia + b mod p. The identity mapping is often all that is needed for MPI_COMM_WORLD. 
Such linear representations, when possible, can be easily detected and cover many common cases, for 
example, subcommunicators that form consecutive segments from MPI_COMM_WORLD. A solution in 
this direction was explored in [34]. Other approaches, incorporated into the FG-MPI implementation, 
were described in [16]. However, this simple mapping covers only a small fraction of the p! possible 
communicators, most of which cannot be represented by such simple means. For more general 
approaches to compact representations of mappings, see the citations in [34].  

4.2. Creation of New Communicators  
Creating duplicate communicators can consume a lot of memory at large scale if care is not taken. In 
fact, an application (Nek5000) running on the IBM Blue Gene/P at Argonne National Laboratory 
initially failed at only a few thousand processes because it ran out of memory after less than 60 calls to 
MPI_Comm_dup.  

To study this issue, we ran a simple test that calls MPI_Comm_dup in a loop several times until it 
fails. We ran this test on the IBM BG/P and varied the number of processes. Figure 4 shows the 
results. Note that the maximum number of communicators supported by the implementation by default 
is 8,189 (independent of MPI_Comm_dup) because of a limit on the number of available context ids.  

The number of new communicators that can be created drops sharply starting at about 2,048 
processes. For 128K processes, the number drops to as low as 264. Although the MPI implementation 
on the BG/P does not duplicate the process-to-processor mapping in MPI_Comm_dup, it allocates 
some memory for optimizing collective communication. For example, it allocates memory to store 
“metadata” (such as counts and offsets) needed to optimize MPI_Alltoall and its variants. This 
memory usage is linear in p. Having such metadata per communicator is useful as it allows different 
threads to perform collective operations on different communicators in parallel. However, the per 
communicator memory usage increases with system size. Since the amount of memory per process is 
limited on the BG/P (512 MiB in virtual node mode), this optimization also limits the total number of 
communicators that can be created with MPI_Comm_dup. 
 



 
Figure 5. MPI memory usage on BG/P after 32 calls to 
MPI Comm dup of MPI COMM WORLD (in virtual node 
mode).  

 
This scalability problem can be avoided in a number of ways. The simplest way is to use a BG/P 

environment variable to disable collective optimizations, which eliminates the extra memory 
allocation. However, it has the undesirable impact of decreasing the performance of all collectives. 
Another approach is to use an environment variable that delays the allocation of memory until the user 
actually calls MPI_ Alltoall on the communicator. This approach helps only those applications 
that do not perform MPI_ Alltoall.  

A third approach, which we have implemented, is to use a buffer pool that is sized irrespective of 
the number of communicators created. Since the buffers exist solely to permit multiple threads to 
invoke MPI_Alltoall concurrently on different communicators, it is sufficient to have as many 
buffers as the maximum number of threads allowed per node, which on the BG/P is four. By using a 
fixed pool of buffers, the Nek5000 application scaled to the full system size without any problem.  

Figure 5 shows the memory consumption in all these cases after 32 calls to MPI_Comm_dup. The 
fixed buffer pool enables all optimizations for all collectives and takes up only a small amount of 
memory.  

4.3. Scalability of MPI Init  
Since the performance of MPI_Init is not usually measured, implementations may neglect 
scalability issues in MPI_Init. On large numbers of processes, however, a nonscalable 
implementation of MPI_Init may result in MPI_Init itself taking several minutes. For example, 
on connection-oriented networks where a process needs to establish a connection with another process 
before communication, it is easiest for an MPI implementation to set up all-to-all connections in 
MPI_Init itself. This operation, however, involves Ω(p

2
) amount of work and hence is nonscalable. 

A better approach is to establish no connections in MPI_Init and instead establish a connection 
when a process needs to communicate with another. This method does make the first communication 
more expensive, but only those connections that are really needed are set up. It also minimizes the 
number of connections, since applications written for scalability are not likely to have communication 
patterns where all processes directly communicate with all other processes.  

Figure 6 shows the time taken by MPI_Init on a Linux cluster with TCP when all connections 
are set up eagerly in MPI_Init and when they are set up lazily. The eager method is clearly not 
scalable.  



Figure 6. Time taken by MPI Init with eager versus lazy 
connections on an eight-core-per-node cluster using TCP.  

4.4. Scalable Algorithms for Collective Communication  
MPI implementations already use sophisticated algorithms for collective communication. Different 
algorithms are used depending on the message size: for short messages, they use an algorithm that 
minimizes latency; for long messages, they use algorithms that minimize bandwidth consumption. For 
example, broadcast is often implemented by using a binomial tree for short messages and a 
scatter-allgather for long messages [6, 30]. The scatter-allgather may become inefficient at large scale 
because the scatter may result in blocks that are too small. For example, for a 1 MiB broadcast on one 
million processes, the scatter phase will result in blocks of size 1 byte. Such problems can be 
countered by using hybrid algorithms that first do a logarithmic broadcast to a subset of nodes and 
then a scatter/allgather on many subsets at the same time [33]. Algorithms with similar properties for 
reduction operations are given in [26].  

Global collective acceleration supported by many networks such as Quadrics, InfiniBand, and Blue 
Gene may be another solution for collectives on MPI_COMM_WORLD. On the Blue Gene/P, for 
example, the MPI_Broadcast, MPI_Reduce, MPI_Allreduce, MPI_Scatter, 
MPI_Scatterv, and MPI_ Allgather collectives take advantage of the combine and broadcast 
features of the tree network [2].  

4.5. Enabling Hybrid Programming  
Exascale machines are expected to have many more cores per node than today, but the memory per 
core is likely to remain the same. Applications, however, want to access more and more memory from 
each process. A solution to this problem is to use a combination of shared-memory and 
message-passing programming models (MPI+X): MPI for moving data between address spaces and 
some shared-memory model (X) for accessing data within an address space that spans multiple cores 
or even multiple nodes. Options for X include the following.  

• OpenMP. This option has been well studied [15, 17, 25, 27]. One limitation is that the shared 
memory is usually restricted to the address space of a single physical node.  

• PGAS languages such as UPC [8] or CoArray Fortran [24]. This option is not as well 
understood, although there has been some recent preliminary work with UPC [7]. The 
advantage of this approach is that the shared address space can span the memories of multiple 
nodes.  

• CUDA/OpenCL. This option is needed for GPU-accelerated systems.  
 

What makes hybrid programming possible is the carefully defined thread-safety semantics of MPI 
[10]. This specification does not require a particular threads implementation or library, such as 
Pthreads or OpenMP. Rather, it defines a mechanism by which the user can request the desired level of 



thread safety and the implementation can indicate the level of thread safety that it provides. This 
mechanism allows the implementation to avoid incurring the cost of providing a higher level of thread 
safety than the user needs.  

The MPI Forum is exploring further enhancements to MPI to support efficient hybrid programming 
[21]. An interesting proposal being discussed is to extend MPI to support multiple communication 
endpoints per process [28]. The basic idea is as follows. In MPI today, each process has one 
communication endpoint (rank in MPI_COMM_WORLD). Multiple threads communicate through that 
one endpoint, requiring the implementation to do use locks, which turn out to be expensive [29]. This 
proposal allows a process to define multiple endpoints. Threads within a process attach to different 
endpoints and communicate through those endpoints as if they are separate ranks. The MPI 
implementation can avoid using locks if each thread communicates on a separate endpoint.  

4.6. Fewer Performance Surprises  
Sometimes we hear the following from users:  

• “I replaced MPI_Allreduce by MPI_Reduce + MPI_Bcast and got better results.”  
• “I replaced MPI_Send(n) by MPI_Send(n/k) + MPI_Send(n/k) + ... + 

MPI_Send(n/k) and got better results.”  
• “I replaced MPI_Bcast(n) by my own algorithm for broadcast using MPI_Send(n) and 

MPI_ Recv(n) and got better results.”  
 

None of these situations should happen. If there is an obvious way intended by the MPI standard of 
improving communication time, a sound MPI implementation should do so, and not the user! We refer 
to these as performance surprises.  

Although MPI is portable, there is considerable performance variability among MPI 
implementations— lots of performance surprises. In [35], we defined a set of common-sense, 
self-consistent performance guidelines for MPI implementations, for instance, the following:  

• Subdividing messages into multiple messages should not reduce the communication time. For 
example, an MPI_Send of 1500 bytes should not be slower than two calls to MPI_Send for 
750 bytes each.  

• Replacing an MPI function with a similar function that provides additional semantic guarantees 
should not reduce the communication time. For example, MPI_Send should not be slower than 
MPI_ Ssend.  

• Replacing a specific MPI operation by a more general operation by which the same 
functionality can be expressed should not reduce communication time. For example, 
MPI_Scatter should not be slower than MPI_Bcast (Figure 7).  

 
Nonetheless, we found instances where such simple requirements are violated. For example, on the 

IBM BG/P, scatter is about four times slower than broadcast, as Figure 8 shows. The reason is because 
broadcast is implemented by using the hardware support provided by the interconnection network, 
whereas scatter is implemented in software. However, it should be possible to implement scatter by 
doing a broadcast and discarding the unnecessary data and achieve four times better performance. It 
would, of course, need extra memory allocation in the implementation.  



Figure 7. Scatter should be faster, or at least no slower, than a 
broadcast because it does less work.  

Figure 8. Performance of MPI Scatter versus MPI Bcast on 
IBM BG/P.  

 
A similar performance surprise is encountered in most MPI implementations because of the switch 

from eager to rendezvous protocol at a particular message size. Short messages are sent eagerly to the 
destination assuming that there is enough memory available to store them. At some message size, the 
implementation switches to a rendezvous protocol, where it waits for an acknowledgment from the 
destination that the matching receive has been posted and hence memory is available to store in the 
incoming message. This often leads to a performance graph similar to the one in Figure 9, where there 
is a sharp jump in communication time when the rendezvous threshold is crossed. In this example, a 
user could get better performance for a 1500-byte message by sending it as two 750-byte messages 
instead.  



Figure 9. Latency on IBM BG/L. The large jump at 1024 bytes 
is due to change of protocol.  

 
If care is not taken, such performance surprises will be even more common at exascale because of 

the large numbers of processes and unexpected interactions among communication patterns at large 
scale. Tools need to be written to check for these requirements, which would help implementers 
identify and fix problems.  

5. Conclusions  
Exascale systems are expected to be available in less than a decade. Although MPI runs successfully 
on today’s petascale systems, for it to run efficiently on exascale systems with millions of cores, some 
issues need to be fixed both in the MPI specification and in MPI implementations. These issues are 
related primarily to memory consumption, performance, and fault tolerance. At small scale, memory 
consumption is often overlooked, but it becomes critical at large scale particularly because the amount 
of memory available per core is not expected to increase. The MPI Forum, which is currently meeting 
regularly to define the next version of MPI (MPI-3), is addressing several of the issues that must be 
fixed in the MPI specification. Correspondingly, MPI implementations are also addressing the issues 
that they must fix in order to scale to exascale. As a result of these efforts, we believe MPI will run 
successfully on exascale systems when they are available. Further details on issues related to scaling 
MPI to millions of cores can be found in [1].  
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