
Scientific Data Management: Challenges and Approaches in
the Extreme Scale Era

Arie Shoshani (LBNL), Scott Klasky (ORNL), Rob Ross (ANL)
Abstract. Exascale computing will prove to be challenging for scientific data management,
given the expected increased volume of data from simulations, and the current expectation of
the extreme scale computer architecture and storage systems. Scientific data management
includes all of the associated problems of managing the data from its inception, to how it
moves from the data generator (exascale resource) to the storage system, along with the
concurrent analysis, reduction, indexing, and provenance collection, during and after the data is
generated. An associated challenge is the reduction of the energy consumption of the entire I/O
pipeline, and the integration of these techniques into a complete end-to-end scientific data
management system. In this paper we explore techniques that can create, manage, and reduce
energy to help mitigate these challenges.

We begin by explaining what makes the problem of managing scientific data unique. We
follow that by delineating the scientific data challenges at extreme scale. Then we provide
many examples of technologies developed by the Scientific Data Management (SDM) Center
since its inception that could be applied or modified for extreme scale challenges, and
implications from SDM center experience. We then conclude with a summary of ideas for
handling the coming flood of data.

1. Introduction

1.1. What is Scientific Data Management?
Managing scientific data has been identified by the scientific community as one of the most important
emerging needs because of the sheer volume and increasing complexity of data being collected.
Effectively generating, managing, and analyzing this information requires a comprehensive, end-to-
end approach to data management that encompasses all of the stages from the initial data acquisition to
the final analysis of the data. Fortunately, the data management problems encountered by most
scientific domains are common enough to be addressed through shared technology solutions. Based on
community input, we have identified three significant requirements. First, provide more efficient
access to storage systems. Second, scientists require technologies to facilitate better understanding of
their data, in particular the ability to effectively perform complex data analysis and searches over
extremely large data sets. Finally, scientists require tools to collect and store results, automating the
process of provenance storage, data-processing, and data analysis. Managing, storing, searching, and
keeping track of these large datasets requires specialized techniques. Specifically, the following four
aspects make the problem addressed by Scientific Data Management unique.

1) Representing the scientific data model. Many scientific domains represent data in space and
time. The majority of the data that is created from large scale computations can be broken into two
categories: checkpoint-restart data, and analysis/visualization data. Typically the output data from
these simulations is written through either: POSIX, MPI-IO, HDF5, netCDF, or similar formats. Data
can then be organized in a data model which can often be represented as regular or irregular meshes

for simulation data. The organization of this data under a data model provides more information that
storage software can use to to efficiently manage the underlying data.

2) Managing I/O for large-scale simulations. Many simulation codes produce large volumes of
data on large-scale parallel machines, such as leadership class machines. Already today, on machines
with 100,000 cores, the volume is measured in hundreds of TB’s per day. Dumping such volume of
data to a parallel file system is often a bottleneck, where the computation on the nodes is waiting for
the I/O to complete. Various techniques have been developed to help with this problem, such as
coordinating I/O from multiple nodes (collective I/O), performing the I/O concurrently with the
computation (asynchronous I/O), and lining up the data on regular boundaries to avoid lock contention
on the parallel file system.

3) Accelerating efficiency of access. Simulation data is typically generated one time step at a time
over a large number of processors. For example, climate models generate tens of variables
(temperature, pressure, etc.) over the entire globe for a time step, and then proceed to the next.
However, when the data is accessed and analyzed variables are often needed one at a time over all the
time steps. Maximizing the efficiency of the analysis tasks requires the data to be reorganized into data
structures that are different from the way the data was generated. Scientists typically wish to search
this data over several variables, in order to see correlations which provide scientific insight. This
requires efficient indexing of the data over each variable to facilitate near real time searches over
combination of variables in order to identify regions of interest, such as finding turbulent regions,
flame fronts, etc.

4) Facilitating scientific data analysis. While much of the attention is given to running on extreme
scale architectures to model the applications of interest, it is necessary to consider the data analysis as
an integral part of the scientific discovery process. The scientific data analysis process involves
multiple techniquess, including data exploration algorithms (such as dimensionality reduction,
decision trees), data mining (such as graph algorithms, clustering, classification, anomaly detection),
data management algorithms (such as indexing, data transformation, data compression), and
visualization (such as graphs, contour plots, parallel-coordinate plots, 3D rotation and movies).
Furthermore, the data analysis process is often a cyclical activity, which requires tracking the steps
used in the analysis and automating the process using technologies such as workflow management.
The techniques for streamlining and accelerating the analysis of scientific data are part of the scientific
data management challenge.

1.2. Current practice in managing scientific data
Simulations have been referred to as “the third pillar of science,” in addition to theory and
experiments. Simulations involve the development of mathematical models that are intended to
represent the scientific phenomena or problems investigated, and use numerical methods to run such
models on large supercomputers to achieve sufficient granularity to achieve accurate modeling. If
observational/experimental data is available, then the simulation results need to be validated against
them as well.

The typical process of investigating scientific problem includes the following steps, and shown
schematically in Fig. 1:

• Run large-scale simulations on large supercomputers
• Dump data on parallel disk systems
• Export data to archives
• Move data to users’ sites – usually selected subsets
• Perform data manipulations and analysis on mid-size clusters
• Collect experimental / observational data
• Move to analysis sites
• Perform comparison of experimental/observational to validate simulation data

Note that the site where the
data is collected is not
necessarily the same site where
the analysis is performed, and
that the site where
observational/experimental data
are collected is usually a
different site as well. That
implies a great deal of data
movement over the wide-area
network when large simulations
are performed. At current rates
of Terabytes per simulation run,
this is still a manageable task,
and specialized infrastructures,
such as the Earth System Grid
(ESG), have been setup to
manage the discovery and
distribution of simulation and
observational data around the
globe. However, when data volumes per simulation run are expected to reach multiple Petabytes, this
approach is no longer practical. New techniques are needed to address this extreme scale challenge.

2. The scientific data extreme scale challenges

2.1. The I/O challenge
An unavoidable issue in HPC systems is the disparity between the rate at which we can calculate
results and the rate at which we can store data persistently. At the root of this issue is the fact that the
rate at which storage devices (i.e., disk drives) improve in performance is much lower than the rate at
which HPC systems improve in terms of FLOPS, as shown in Fig. 2. This disparity means that
increasing the number of drives must be used in each successive deployment to match improvements
on the compute side. New persistent memory technologies (e.g., NAND Flash, Phase Change
Memory) promise easier construction of high bandwidth aggregate storage units, but their cost per
byte of storage is not predicted to drop enough in the near future to replace disk drives.

The I/O challenge, then, is to provide enough on-line storage for application datasets and ensure
that on-line storage is accessible for reading and writing at rates that do not leave the computer idle for
extended periods. At the extreme scale, the expectation is that on-line storage will be on the order of
500-1000 Petabytes accessible at a peak rate of 60 Terabytes per second. Meeting this challenge will
require novel hardware and software architectures. On the hardware side, persistent memory must be
placed strategically in the system to serve as a short-term data sink for information flowing off the
system, allowing computation to rapidly resume. Meanwhile, new storage software will
asynchronously stage data off the system. This software must interact with the operating system and
networking layers to ensure that noise is not introduced into the computation, and it must be supported
by a storage system that facilitates unprecedented concurrency in I/O.

Figure 1. Current practice of the scientific exploration process

2.2. The data analysis challenge
The volume of data generated by simulations is proportional to: 1) the FLOPS of the HPC system,
2) the memory on the system, and 3) the underlying computational model used in the code. In the
extreme scale, it is prohibitive to follow the traditional methods of getting the data out to external
storage comprised of disks and/or tertiary storage, and analyze the data later. Instead, two
complementary approaches of data analysis need to be considered: (1) “in-situ analysis” - identifying
what parts of the analysis can be done in-situ, i.e. while the data is generated; and (2) “preparation for
off-line analysis” - what can be done to prepare the data (reduce, summarize, transpose, index, etc.) for
off-line processing after the data is stored on external storage. We term the combination of (1) and (2)
as an I/O pipeline.

Data analysis, in general, falls into two categories that fit the above approaches. The first approach
of “in-situ analysis” can be used for performing many analysis tasks for finding known or expected
patterns. The second approach of “preparation for off-line analysis” is in order to facilitate iterative
exploratory analysis processes of looking for unknown patterns or features in the data. These
approaches can often benefit from common tasks, such as summarizing the data in-situ for monitoring
progress of the simulation in near real-time, as well as using such summaries as a data reduction
methods for further off-line analysis.

As the size of simulation, observational, and experimental datasets grows in the extreme scale,
many of the existing technologies are not practical for both on-line and off-line data analysis and
knowledge discovery processes. Solutions need to take advantage of data reduction methods, parallel
processing, smart navigation, summarization, and manipulations of the massive datasets. New
methods for achieving better efficiency of searching, processing, exploring, and displaying
information are needed.

2.3. The energy reduction challenge
Current focus in the design of future extreme scale machines is on using low power chips. However,
even with such low power chips there is a high consumption of energy for data movement. According

Figure 2. The rate of performance of disks is much lower than compute rates
(Thanks to R. Freitas of IBM Almaden Research Center for providing some of the data)

to recent publications (see for example [7]), about 70% of the extreme scale system power
consumption will be due to data movement. Data movement includes three categories: within-node
data movement, inter-node data movement, and memory-to-disk data movement. Within-node data
movement refers to using the 5 levels of memory: registers, L1, L2, L3 cache, and main memory.
Moving data to main memory is 200X more expensive in power consumption than moving it to L1
only. This suggests the need to control where to save data on a temporary basis when performing
various in-situ analysis and summarization functions. That will require the development of
programming languages that provide explicit references to the levels of memory within-node.

While within-node to main memory requires about 10 cycles, inter-node data movement is in the
order of 100’s of cycles. This ratio of 1:10 or higher suggests the need to minimize such data
movement. This requires the development of algorithms that minimize data movement for various in-
situ analysis tasks, as well as summarization, transposition, and indexing.

Data movement to hard drives (disk) requires about 10,000 cycles, and the corresponding energy
consumption. Obviously, minimizing what is stored on disk is a useful technique, but in addition it is
important to avoid reading back from disk unnecessarily. For example, rather than dumping data to
disk, and then generating indexes (which requires reading the entire dataset), it is better to generate the
index in-situ before the data in written out to disk. Such indexes also help minimize the data read from
disk for subsequent exploratory analysis.

3. Overview of successful technologies in the SDM center
Our approach to scientific data management is to employ an evolutionary development and
deployment process: from research through prototypes to deployment and infrastructure. Accordingly,
we have organized our activities in three layers that abstract the end-to-end data flow described above.
We labeled the layers (from bottom to top in Fig. 3):

• Storage Efficient Access (SEA)
• Data Mining and Analysis (DMA)
• Scientific Process Automation (SPA)

The SEA layer is immediately on top of hardware, operating systems, file systems, and mass

storage systems, and provides parallel data access technology, and transparent access to archival
storage. The DMA layer, which builds on the functionality of the SEA layer, consists of indexing,
feature identification, and parallel statistical analysis technology. The SPA layer, which is on top of
the DMA layer, provides the ability to compose scientific workflows from the components in the
DMA layer as well as application specific modules.

4. Implications from SDM center experience

4.1. Asynchronous I/O and Combining I/O Operations
While great benefits have been seen for applications utilizing collective I/O routines, it is not always
convenient, or even possible, for applications to adopt these interfaces. To provide most of the benefits
of the techniques underlying collective I/O implementations to the widest array of applications, new
software that combines and asynchronously stages data is necessary. This software is referred to as I/O
delegation or I/O staging software.

One such implementation developed as part of the SDM center, from Nisar et.al. [14], is a software
layer in MPI-IO that utilizes a small subset of compute nodes (I/O delegates) as a location for data
combining and to drive I/O. This layer is implemented at the bottom layer of the ROMIO MPI-IO
implementation, where it intercepts all the system I/O requests initiated by ROMIO and redirects them
to delegate nodes. The researchers incorporated a static approach to mapping file regions to I/O
delegates that was proposed in our earlier work on MPI-IO file domains [9]. Experiments using the
FLASH and S3D I/O kernels were performed on two parallel machines: Abe at NCSA and Franklin at
NERSC. Their experiments show that using MPI independent I/O functions in the two application
kernels can even outperform the same kernels using collective I/O, with the observed improvement
ranging from 2.5 times to 15 times better I/O bandwidth.

Figure 3. The three layers of technologies in the SDM center and the
technologies supported (shown in the labeled boxes).

Beyond the allocation of compute nodes and integration of I/O delegation and caching into I/O
middleware like MPI-IO, techniques in the context of I/O forwarding have also been investigated. I/O
forwarding software, such as the CNK on IBM Blue Gene/P systems and DVS on Cray XT systems,
provides a conduit for transferring I/O operations on clients out to gateway, or I/O nodes that have
direct access to storage systems. As part of a DOE/NSF funded collaborative effort a portable I/O
forwarding system called IOFSL (I/O Forwarding Software Layer) is being developed in order to
investigate how techniques that have proven successful in I/O delegation work can be applied in this
new context [15, 21].

4.2. Taking advantage of I/O libraries for in-situ processing
Efficient Scientific Data Management (SDM) is both a necessity and a key enabler for conducting
science at scale. This is because SDM goes beyond simply performing input and output for large-scale
simulations. It also helps scientists create, manage, and use the entire data output pipeline, from the
time data is generated by high end simulations, to the time it is analyzed and visualized. When doing
so, efficiency is a necessity, because the large-scale simulations envisioned to run on future extreme
scale machines will generate immense amounts of output data. At the same time, however, SDM is a
key enabler for science because it is precisely these outputs that hold the key to future scientific
discovery, and those outputs only become useful for attaining scientific goals and supporting scientific
inquiry after they have been analyzed, evaluated, understood, visualized, stored, and/or transformed
into the inputs required by coupled simulations.

The critical importance to scientific discovery of the output data generated by future extreme scale
simulations has prompted us to develop a
componentized approach to data management.
This approach, embodied in the Adaptable I/O
System (ADIOS), not only enables high
performance I/O at scale, but it also constitutes
the beginning of a scalable approach to
constructing, managing, and using the entire
output pipelines used by high performance
simulations. The ADIOS componentized output
enables portable high performance across
multiple machines, using diverse transports,
and supporting both custom and standard file
formats and data representations [12].
Furthermore, the PreDatA framework for
immediate data analysis [23] interfacing with
ADIOS permits users to efficiently apply to
output, as it is being generated – in-transit –
data annotation, indexing, reorganization,
formatting, and immediate analysis actions,
using a streaming services-based programming
model. A processing workflow example is shown in Fig. 4. Its “data spaces” service takes a further
step by providing explicit support for the kinds of data indexing and reorganization needed for code
coupling [3]. The actions taken are in accordance with the resources provided to PreDatA, typically
comprised of sets of nodes in a “staging area” reserved for PreDatA use by the application.

The ADIOS framework, shown in Fig. 5, is an open source componentization of the I/O layer. It
provides an easy-to-use programming interface that is uniform across multiple data formats. It enables
the capture of metadata and provenance in the background without polluting the application software.
In many cases, the performance of ADIOS is over 10x faster than other parallel output techniques. The
second publically released version of the Adaptable I/O System [11] contains many new
enhancements that allows users to use the PreDataA framework for I/O staging through the DataTap

Figure 4. Workflow of three analysis pipelines.
Red nodes have the highest priority that must be
executed even if the application is blocked. Blue
nodes can be skipped if there is no time for them.

[2] method, and through the NSSI [17] method. ADIOS 1.2 also contains a new method, MPI-AMR,
which is designed to maximize the I/O
performance on the Lustre file system. ADIOS has
many different methods that allow users to gain
near “peak” I/O performance for some of the
largest applications running at the leadership class
facilities of the Department of Energy [10] [16].

4.3. Allow statistics to be added into files
ADIOS contains a new log-file format [13],that is
self-describing, and contains a redundancy of
metadata operations to allow the format to be both
efficient in reading and writing, and resilient. The
Binary-Packed (BP) format not only supports
flexible conversion to standard file formats, such as
NetCDF and HDF5, but it also facilitates a
summary inspection of the data, termed data
characteristics. ADIOS collects local, simple
statistical and/or analytical data during the output
operation for use in identifying desired data sets.
The characteristics included in ADIOS 1.2 contain
the minimum, maximum, average, standard
deviation of an array at each time step. These
characteristics have been tested from a variety of
applications, and have been shown to take <4% of
the total I/O cost of the simulation. Histograms are
also included as an “optional” characteristic, where
users can indicate the break points for the histogram of an output variable. When a user inquires about
variability in an ADIOS-BP dataset, they can pull out these statistics without reading through the
entire dataset. The bpls [17] utility can allow users to quickly look at large scale datasets, and
determine these characteristics for all variables in seconds for extreme scale files.

4.4. In-memory code coupling
One of the methods inside the ADIOS framework is DataSpaces [6] which is an advanced
coordination and interaction framework to provide the abstractions and mechanisms to support flexible
and dynamic inter-application collaboration at runtime. DataSpaces uses Remote Direct Memory
Access (RDMA) which is optimized for fast, asynchronous data transfers with low latency and small
overheads. DataSpaces enables direct memory-to-memory communication between the nodes of
distinct applications through RDMA. DataSpaces also enables the overlap of computations and
communication allowing better utilization of the computing resources. By employing DataSpaces as a
method in ADIOS, users can couple codes together with using I/O operations (open, write, read, close)
as if writing into a file and reading from it.

The API used in ADIOS with the DataSpaces method, allows application scientists to change from
file based coupling to in-memory coupling, with only changing the method used in ADIOS at runtime.
The implementation consists of a client component that is integrated with the two application codes
and allows for dynamic data exchange at run time, and a space component that runs in a set of
dedicated “staging nodes”, see Fig. 6. One of the advantages of using DataSpaces is that it allows
users to use a Partitioned Global Address Space (PGAS) PGAS-like programming model.

Figure 5. The ADIOS componentized I/O
framework. The feedback mechanism and the
services in the Staging area are proposed
extensions.

4.5. Web-based tools for monitoring, analysis, and data understanding
The Framework for Integrated End-to-end SDM Technologies (FIESTA) [4], has been used by several
application groups to automate and monitor large scale simulations. One of the components of the
FIESTA framework is the extendible, web-based, dashboard (eSimMon) [19] which is a front-end for
simulation monitoring and analysis which helps scientists monitor, manage, visualize, and collaborate
with other scientists. An example of the web-based screen is shown in Fig. 7. eSimMon uses Adobe
Flash on the client side, and a combination of PHP, Python, and MySQL on the server side. The focus
of using this technology, along with the provenance capturing system in the Kepler [1] workflow
system, is to remove the data
manipulation barrier from
application scientists, such as
file locations and formats, and
allow them to focus on the
science.

On the back end, eSimMon
uses PHP and the MySQL
database to make the links
between user requests on the
interface and (BP, NetCDF,
HDF5) data files. The Kepler
workflow records provenance
information in the database,
which the dashboard can query
to provide the linkage from the
visualization on the dashboard
and the actual data file. The
recorded provenance includes
the history of all of the data
transformations, all of the operations that were executed, and the environment information, combined
with the source code of the executed simulations and all actions of the users on the data. The
provenance information is the key in enabling eSimMon to hide the details from the users and raise the
focus from files to scientific variables.

The latest enhancement to eSimMon allows users to think of this environment as a Data Analysis
Facility [TPK+10]. ESimMon now includes many analysis features, which can allow users to use

Figure 6. DataSpaces provides an abstract data space for exchanging data
between applications

Figure 7. An example of a web-based dashboard for monitoring
and evaluating simulations progress

statistical analysis packages, R and Matlab, run on a remote resource. Users can upload their Matlab
scripts, modify the input parameters, and share with their collaborators. These analysis services are run
on analysis systems where the user uploaded them, and the underlying workflow technology of
ESimMon can move data to the analysis service, or move the analysis to the data.

4.6. In-situ analysis in I/O or Staging nodes – a pipeline example
We have developed new technologies for managing the petascale resources used by high-end
applications. Examples include scheduling methods that ensure that the I/O actions taken by HPC
codes do not interfere with the codes' internal communications and in-memory support for code
coupling via the increasingly common notion of “staging areas” on petascale machines. A further
example is the ADIOS service-based approach for associating with HPC codes, which provides the
functionality needed not only to output the enormous data volumes of HPC applications with high
performance, but also to quickly analyze data and make it accessible to end users interested in
scientific insights derived from their applications.

PreDataA adds to the current I/O stack data staging and in-transit processing capabilities. PreDataA
resides on both the compute nodes, and the staging nodes, and dynamically decides on where different
types of analysis can take place. PreDataA provides a framework, into which users can “plug-in”
analysis or other data intensive processes. The advantage of using the PreDataA framework is that it
can reduce the data being output to the file system, which becomes increasingly important as we move
to the extreme scale.

We use two types of programming models inside our framework. The first is a stream processing
programming model, which is shown in Fig. 8, which is similar to the map-reduce framework [5].
Each staging node is
responsible for processing a
stream of packed data
chunks, with each chunk
from separate compute
processes. The processing of
the streams is done in five
stages, as shown in [20].
Together, this is similar to,
but somewhat different than
map-reduce, as described in
[24]. By combining the
PGAS-like programming model in DataSpaces, along with the PreDataA framework, we are exploring
new opportunities in creating flexible programming models for users to “plug-in” their analysis, data
reduction, visualization, and data indexing routines.

4.7. In-situ data summarization and reduction
In addition to performing analysis along the I/O pipeline, analysis and data reduction may also be
performed on the nodes on which computation is occurring. This has the distinct advantage of
allowing analysis routines to operate without the overhead of remote access to data, but requires that
analysis routines scale to the number of nodes that the simulation is using and that these routines have
methods for accessing the dataset in the simulation's native format(s).

Yu et al. provide a good example of this type of approach, integrating both volume and particle
rendering into a combustion code running at as many as 15 thousand cores [23]. The approach is not
limited strictly to performing analysis at runtime. In separate work, by selectively compressing the
dataset itself Wang et al. [22] were able to reduce the amount of data stored for analysis by 20-30x
while maintaining fidelity at regions of interest and the flexibility to choose and adjust parameters
such as viewpoints and transfer functions after the fact. This is shown in Fig. 9, where the feature of

Figure 8. PreDatA streamlined processing pipeline

interest in this case is the mixture fraction with an iso value of 0.2 (white surface), and the colored
regions are a volume rendering of the HO2 variable.

4.8. Other methods to address
I/O challenges

While much of the discussion
here has covered software that
sits between applications and
the file system, parallel file
systems themselves are in
need of change. The hardware
architecture of current HPC
storage systems is not as cost
effective as those used in data
intensive computing
environments [8], but HPC
parallel file systems were not
designed to operate reliably on faulty commodity components. Improvements in storage software will
enable extreme scale storage solutions at a new price point. Likewise, the POSIX file system interface
is increasingly hindering performance. New data models that deliver high productivity as well as high
performance to computational scientists need to be supported throughout the I/O software stack, rather
than being applied on top of this antiquated interface. It is all these approaches in concert, from in situ
analysis to new and more effective data models that will enable us to meet the data volume and I/O
challenges to come.

4.9. Indexing
In many scientific applications, to gain insight from massive amounts of data, the scientists have to
locate a relatively small number of data records that hold the key information. For example, in a study
of turbulent combustions, these special data records might be called ignition kernels. In a study of
laser-wakefield particle accelerators, these special data records might be called particle bunches.
Sifting through mountains of data to locate these “interesting” data records is a significant challenge.
To meet this challenge, we have been developing and expanding an indexing software package called
FastBit. An example showing parallel coordinate visualization display using FastBit for real-time
selection of particle of interest (e.g. energetic particles) is shown in Fig. 10. This work, performed in
collaboration with the Vacet Visualization center, replaced the existing IDL based analysis program

Figure 9. Stored values can be reduced significantly by showing
details only for regions of interest. [Data courtesy J. Chen (SNL),
image courtesy H. Yu (SNL)].

Figure 10. An example of query-driven visualization using FastBit indexes

with a FastBit based program, resulting in a three orders of magnitude speedup (from 300 seconds to
0.3 seconds), as reported in [18] for laser-wakefield particle accelerators, along with several other
application areas.

FastBit is based on an indexing technique called bitmap index. This type of index is well-suited for
searching scientific data where the data records usually remain unchanged after they are created.
Taking advantage of this “read-only” (or “read-mostly”) nature, FastBit indexes are designed to
answer queries fast by sacrificing some efficiency in updating the indexes. This allows us to package
the indexing data structures tightly, reduce the I/O requirement when answering a query and improve
query response time. Additionally, FastBit is designed to work with user data in their existing formats,
instead of demanding the user data to be transform into a particular format or loaded into a database
management system. This flexibility makes it possible for users to accelerate their search operations
with a minimal amount of change to their existing data analysis framework.

Efficient indexing of data is useful for both in-situ analysis and post-processing exploratory
analysis. Having indexes available while the data is generated will allow in-situ monitoring, subset
selection, and in-situ visualization in the extreme scale. For post-processing, generating the index
while the data is generated saved the cost of generating the index after the data is saved on disk.

5. Summary
To address the data volume challenge, the main goal is to minimize the data to be stored. This can be
done with several techniques: (1) perform in situ and co- analysis when possible, using extra cores,
GPUs, I/O nodes, and staging nodes; (2) summarize data in-situ using parallel statistics methods, and
enhance parallel algorithms to be performed by piece-wise statistical computation, taking advantage of
multi-cores and GPUs; (3) avoid sending data to disk when it is only needed temporarily, such as data
from uncertainty quantification (UQ) runs, when only summaries of each run are needed; (4) perform
monitoring of simulation progress in situ, using staging nodes to support workflows (or pipelines);
(5) keep details of data to be moved to disk only in regions of exploration, and summarize in other
regions (as was shown in Fig.9).

To address the energy challenge, the goal is to minimize data movement. Several techniques can
be used: (1) store intermittent data, such as checkpoint data, on large NVRAM (non-volatile random
access memory) rather than move to disk. Similarly, monitoring data can be stored on NVRAM, with
appropriate tools for displaying results on web-based dashboards; (2) create indexes in-situ using extra
core(s) to generate partial indexes, then combine results; (3) collect multiple “writes” and move them
asynchronously when possible; (4) perform code-coupling in memory; (5) minimize data access after
it is stored on disk – take advantage of indexing; (6) keep analysis operations as close to the stored
data as possible; (7) continue to keep data that is needed long term on tape archives since they require
no energy when not in use; (8) during post-processing exploratory analysis, bring from tape as needed
using index information, power down disks when possible based on access patterns, or use multi-speed
disks (a disk in “stand-by” mode requires only one-tenth of the energy of a full spin mode), and use
NVRAM to front disks to hold frequently accessed files.

We believe that a combination of such techniques will be necessary to make future extreme scale
machines effective and avoiding clogging them with unnecessary data.

References
[1] Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludäscher, B., and Mock, S., 2004, "Kepler: An

Extensible System for Design and Execution of Scientific Workflows.
[2] Abbasi, H., Lofstead, J., Zheng, F., Klasky, S., Schwan, K., and Wolf, M., 2007, "Extending I/O

through High Performance Data Services," IEEE International, Austin, TX.
[3] Abbasi, H., Wolf, M., Eisenhauer, G., Klasky, S., Schwan, K., and Zheng, F., 2009, "Datastager:

Scalable Data Staging Services for Petascale Applications," ACM, Garching, Germany.
[4] Cummings, J., Lofstead, J., Schwan, K., Sim, A., Shoshani, A., Docan, C., Parashar, M., Klasky,

S., Podhorszki, N., and Barreto, R., 2010, "Effis: An End-to-End Framework for Fusion

Integrated Simulation," Parallel, Distributed, and Network-Based Processing, Euromicro
Conference on, 0(pp. 428-434.

[5] Dean, J., and Ghemawat, S., 2008, "Mapreduce: Simplified Data Processing on Large Clusters,"
Commun. ACM, 51(1), pp. 107-113.

[6] Docan, C., Parashar, M., and Klasky, S., 2010, "Dataspaces: An Interaction and Coordination
Framework for Coupled Simulation Workflows," ACM, Chicago, Illinios.

[7] A. Geist, “Paving the Roadmap to EXASCALE,” SciDAC Review, NUMBER 16 Special Issue
2010.

[8] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System. In
Proceedings of the 19th ACM Symposium on Operating Systems Principles. pp. 29-43, 2003.

[9] Wei-keng Liao, and Alok Choudhary. Dynamically Adapting File Domain Partitioning Methods
for Collective I/O Based on Underlying Parallel File System Locking Protocols. In the
Proceedings of International Conference for High Performance Computing, Networking, Storage
and Analysis, Austin, Texas, November 2008.

[10] Lofstead, J., Fang, Z., Liu, Q., Klasky, S., Oldfield, R., Kordenbrock, T., Schwan, K., and Wolf,
M., 2010, "Managing Variability in the Io Performance of Petascale Storage Systems," IEEE
Press, New Orleans, LA.

[11] Lofstead, J., Klasky, S., Booth, M., Abbasi, H., Zheng, F., Wolf, M., and Schwan, K., 2009,
"Petascale Io Using the Adaptable Io System," Cray User's Group.

[12] Jay Lofstead, Scott Klasky, Karsten Schwan, Norbert Pohorszki ,Chen Jin, 2008, "Flexible Io
and Integration for Scientific Codes through the Adaptable Io System (Adios)," Proc. CLADE
2008 at HPDC, ACM, ed. Boston, Massachusetts.

[13] Lofstead, J., Zheng, F., Klasky, S., and Schwan, K., 2009, "Adaptable, Metadata Rich Io
Methods for Portable High Performance Io," 2009 Ieee International Symposium on Parallel &
Distributed Processing, Vols 1-5, pp. 778-787.

[14] Arifa Nisar, Wei-keng Liao, and Alok Choudhary. Scaling Parallel I/O Performance through I/O
Delegate and Caching System. In the Proceedings of International Conference for High
Performance Computing, Networking, Storage and Analysis, Austin, Texas, November 2008.

[15] Kazuki Ohta, Dries Kimpe, Jason Cope, Kamil Iskra, Robert Ross, and Yutaka Ishikawa.
Optimization techniques at the I/O forwarding layer. In Proceedings of the IEEE International
Conference on Cluster Computing, September 2010 (to appear).

[16] Polte, M., Lofstead, J., Bent, J., Gibson, G., Klasky, S., Liu, Q., Parashar, M., Podhorszki, N.,
Schwan, K., Wingate, M., and Wolf, M., 2009, "...And Eat It Too: High Read Performance in
Write-Optimized Hpc I/O Middleware File Formats.

[17] Podhorszki, N., Liu, Q., Lofstead, J., Klasky, S., Wolf, M., Schwan, K., and Team), T. A., 2010,
Adios 1.2, 2010, http://users.nccs.gov/~pnorbert/ADIOS-UsersManual-1.2.pdf

[18] Oliver Ruebel, Sean Ahern, E. Wes Bethel, Mark D. Biggin, Hank Childs, Estelle Cormier-
Michel, Angela DePace, Michael B. Eisen, Charless C. Fowlkes, Cameron G.R. Geddes, Hans
Hagen, Bernd Hamann, Min-Yu Huang, Soile V.E. Keraenen, David W. Knowles, Cris L.
Luengo Hendriksl, Jitendra Malik, Jeremy Meredith, Peter Messmer, Prabhat, Daniela Ushizima,
Gunther H. Weber and Kesheng Wu. Coupling visualization and data analysis for knowledge
discovery from multi-dimensional scientific data Procedia Computer Science Volume 1, Issue 1,
May 2010, Pages 1751-1758 ICCS 2010

[19] Santos, E., Tierny, J., Khan, A., Grimm, B., Lins, L., Freire, J., Pascucci, V., Silva, C. T.,
Klasky, S., Barreto, R., and Podhorszki, N., 2009, "Enabling Advanced Visualization Tools in a
Web-Based Simulation Monitoring System," e-Science and Grid Computing, International
Conference on, 0(pp. 358-365.

[20] R. Tchoua, S. Klasky, N. Podhorszki, B. Grimm, A. Khan, E. Santos, C. Silva, P. Mouallem, and
Vouk, M., 2010, "Collaborative Monitoring and Analysis for Simulation Scientist," Proc. The
2010 International Symposium on Collaborative Technologies and Systems (CTS 2010),
Chicago, IL.

http://users.nccs.gov/~pnorbert/ADIOS-UsersManual-1.2.pdf�

[21] Venkatram Vishwanath, Mark Hereld, Kamil Iskra, Dries Kimpe, Vitali Morozov, Michael E.
Papka, Robert Ross, and Kazutomo Yoshii. Accelerating I/O forwarding in IBM Blue Gene/P
systems. In Proceedings of Supercomputing, November 2010 (to appear).

[22] Chaoli Wang, Hongfeng Yu, and Kwan-Liu Ma. Application-driven compression for visualizing
large-scale time-varying volume data. IEEE Computer Graphics and Applications, 2009.

[23] Hongfeng Yu, Chaoli Wang, Ray Grout, Jacqueline Chen, and Kwan-Liu Ma. In Situ
Visualization for Large-Scale Combustion Simulations. In IEEE Computer Graphics and
Applications, Vol. 30, Number 3, May/June 2010.

[24] Zheng, F., Abbasi, H., Docan, C., Lofstead, J., Klasky, S., Liu, Q., Parashar, M., Podhorszki, N.,
Schwan, K., and Wolf, M., 2009, "Predata-Preparatory Data Analytics on Peta-Scale Machines,"
Proc. 24th IEEE International Parallel and Distributed Processing Symposium, Atlanta.

	1. Introduction
	1.1. What is Scientific Data Management?
	1.2. Current practice in managing scientific data

	2. The scientific data extreme scale challenges
	2.1. The I/O challenge
	2.2. The data analysis challenge
	2.3. The energy reduction challenge

	3. Overview of successful technologies in the SDM center
	4. Implications from SDM center experience
	4.1. Asynchronous I/O and Combining I/O Operations
	4.2. Taking advantage of I/O libraries for in-situ processing
	4.3. Allow statistics to be added into files
	4.4. In-memory code coupling
	4.5. Web-based tools for monitoring, analysis, and data understanding
	4.6. In-situ analysis in I/O or Staging nodes – a pipeline example
	4.7. In-situ data summarization and reduction
	4.8. Other methods to address I/O challenges
	4.9. Indexing

	5. Summary
	References

