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Abstract. Exascale computing will prove to be challenging for scientific data management, 
given the expected increased volume of data from simulations, and the current expectation of 
the extreme scale computer architecture and storage systems. Scientific data management 
includes all of the associated problems of managing the data from its inception, to how it 
moves from the data generator (exascale resource) to the storage system, along with the 
concurrent analysis, reduction, indexing, and provenance collection, during and after the data is 
generated. An associated challenge is the reduction of the energy consumption of the entire I/O 
pipeline, and the integration of these techniques into a complete end-to-end scientific data 
management system. In this paper we explore techniques that can create, manage, and reduce 
energy to help mitigate these challenges. 

We begin by explaining what makes the problem of managing scientific data unique. We 
follow that by delineating the scientific data challenges at extreme scale. Then we provide 
many examples of technologies developed by the Scientific Data Management (SDM) Center 
since its inception that could be applied or modified for extreme scale challenges, and 
implications from SDM center experience. We then conclude with a summary of ideas for 
handling the coming flood of data. 

1. Introduction  

1.1. What is Scientific Data Management? 
Managing scientific data has been identified by the scientific community as one of the most important 
emerging needs because of the sheer volume and increasing complexity of data being collected. 
Effectively generating, managing, and analyzing this information requires a comprehensive, end-to-
end approach to data management that encompasses all of the stages from the initial data acquisition to 
the final analysis of the data. Fortunately, the data management problems encountered by most 
scientific domains are common enough to be addressed through shared technology solutions. Based on 
community input, we have identified three significant requirements. First, provide more efficient 
access to storage systems. Second, scientists require technologies to facilitate better understanding of 
their data, in particular the ability to effectively perform complex data analysis and searches over 
extremely large data sets. Finally, scientists require tools to collect and store results, automating the 
process of provenance storage, data-processing, and data analysis. Managing, storing, searching, and 
keeping track of these large datasets requires specialized techniques. Specifically, the following four 
aspects make the problem addressed by Scientific Data Management unique. 

1) Representing the scientific data model. Many scientific domains represent data in space and 
time. The majority of the data that is created from large scale computations can be broken into two 
categories: checkpoint-restart data, and analysis/visualization data. Typically the output data from 
these simulations is written through either: POSIX, MPI-IO, HDF5, netCDF, or similar formats. Data 
can then be organized in a data model which can often be represented as regular or irregular meshes 



for simulation data. The organization of this data under a data model provides more information that 
storage software can use to to efficiently manage the underlying data. 

2) Managing I/O for large-scale simulations. Many simulation codes produce large volumes of 
data on large-scale parallel machines, such as leadership class machines. Already today, on machines 
with 100,000 cores, the volume is measured in hundreds of TB’s per day. Dumping such volume of 
data to a parallel file system is often a bottleneck, where the computation on the nodes is waiting for 
the I/O to complete. Various techniques have been developed to help with this problem, such as 
coordinating I/O from multiple nodes (collective I/O), performing the I/O concurrently with the 
computation (asynchronous I/O), and lining up the data on regular boundaries to avoid lock contention 
on the parallel file system. 

3) Accelerating efficiency of access. Simulation data is typically generated one time step at a time 
over a large number of processors. For example, climate models generate tens of variables 
(temperature, pressure, etc.) over the entire globe for a time step, and then proceed to the next. 
However, when the data is accessed and analyzed variables are often needed one at a time over all the 
time steps. Maximizing the efficiency of the analysis tasks requires the data to be reorganized into data 
structures that are different from the way the data was generated. Scientists typically wish to search 
this data over several variables, in order to see correlations which provide scientific insight. This 
requires efficient indexing of the data over each variable to facilitate near real time searches over 
combination of variables in order to identify regions of interest, such as finding turbulent regions, 
flame fronts, etc.  

4) Facilitating scientific data analysis. While much of the attention is given to running on extreme 
scale architectures to model the applications of interest, it is necessary to consider the data analysis as 
an integral part of the scientific discovery process. The scientific data analysis process involves 
multiple techniquess, including data exploration algorithms (such as dimensionality reduction, 
decision trees), data mining (such as graph algorithms, clustering, classification, anomaly detection), 
data management algorithms (such as indexing, data transformation, data compression), and 
visualization (such as graphs, contour plots, parallel-coordinate plots, 3D rotation and movies). 
Furthermore, the data analysis process is often a cyclical activity, which requires tracking the steps 
used in the analysis and automating the process using technologies such as workflow management. 
The techniques for streamlining and accelerating the analysis of scientific data are part of the scientific 
data management challenge. 

1.2. Current practice in managing scientific data 
Simulations have been referred to as “the third pillar of science,” in addition to theory and 
experiments. Simulations involve the development of mathematical models that are intended to 
represent the scientific phenomena or problems investigated, and use numerical methods to run such 
models on large supercomputers to achieve sufficient granularity to achieve accurate modeling. If 
observational/experimental data is available, then the simulation results need to be validated against 
them as well.  

The typical process of investigating scientific problem includes the following steps, and shown 
schematically in Fig. 1:  

• Run large-scale simulations on large supercomputers 
• Dump data on parallel disk systems 
• Export data to archives 
• Move data to users’ sites – usually selected subsets 
• Perform data manipulations and analysis on mid-size clusters 
• Collect experimental / observational data 
• Move to analysis sites 
• Perform comparison of experimental/observational to validate simulation data 



Note that the site where the 
data is collected is not 
necessarily the same site where 
the analysis is performed, and 
that the site where 
observational/experimental data 
are collected is usually a 
different site as well. That 
implies a great deal of data 
movement over the wide-area 
network when large simulations 
are performed. At current rates 
of Terabytes per simulation run, 
this is still a manageable task, 
and specialized infrastructures, 
such as the Earth System Grid 
(ESG), have been setup to 
manage the discovery and 
distribution of simulation and 
observational data around the 
globe. However, when data volumes per simulation run are expected to reach multiple Petabytes, this 
approach is no longer practical. New techniques are needed to address this extreme scale challenge. 

2. The scientific data extreme scale challenges 

2.1. The I/O challenge 
An unavoidable issue in HPC systems is the disparity between the rate at which we can calculate 
results and the rate at which we can store data persistently. At the root of this issue is the fact that the 
rate at which storage devices (i.e., disk drives) improve in performance is much lower than the rate at 
which HPC systems improve in terms of FLOPS, as shown in Fig. 2. This disparity means that 
increasing the number of drives must be used in each successive deployment to match improvements 
on the compute side. New persistent memory technologies (e.g., NAND Flash, Phase Change 
Memory) promise easier construction of high bandwidth aggregate storage units, but their cost per 
byte of storage is not predicted to drop enough in the near future to replace disk drives. 

The I/O challenge, then, is to provide enough on-line storage for application datasets and ensure 
that on-line storage is accessible for reading and writing at rates that do not leave the computer idle for 
extended periods. At the extreme scale, the expectation is that on-line storage will be on the order of 
500-1000 Petabytes accessible at a peak rate of 60 Terabytes per second. Meeting this challenge will 
require novel hardware and software architectures. On the hardware side, persistent memory must be 
placed strategically in the system to serve as a short-term data sink for information flowing off the 
system, allowing computation to rapidly resume. Meanwhile, new storage software will 
asynchronously stage data off the system. This software must interact with the operating system and 
networking layers to ensure that noise is not introduced into the computation, and it must be supported 
by a storage system that facilitates unprecedented concurrency in I/O. 

 

 
Figure 1. Current practice of the scientific exploration process 



 

2.2. The data analysis challenge 
The volume of data generated by simulations is proportional to: 1) the FLOPS of the HPC system, 
2) the memory on the system, and 3) the underlying computational model used in the code. In the 
extreme scale, it is prohibitive to follow the traditional methods of getting the data out to external 
storage comprised of disks and/or tertiary storage, and analyze the data later. Instead, two 
complementary approaches of data analysis need to be considered: (1) “in-situ analysis” - identifying 
what parts of the analysis can be done in-situ, i.e. while the data is generated; and (2) “preparation for 
off-line analysis” - what can be done to prepare the data (reduce, summarize, transpose, index, etc.) for 
off-line processing after the data is stored on external storage. We term the combination of (1) and (2) 
as an I/O pipeline. 

Data analysis, in general, falls into two categories that fit the above approaches. The first approach 
of “in-situ analysis” can be used for performing many analysis tasks for finding known or expected 
patterns. The second approach of “preparation for off-line analysis” is in order to facilitate iterative 
exploratory analysis processes of looking for unknown patterns or features in the data. These 
approaches can often benefit from common tasks, such as summarizing the data in-situ for monitoring 
progress of the simulation in near real-time, as well as using such summaries as a data reduction 
methods for further off-line analysis. 

As the size of simulation, observational, and experimental datasets grows in the extreme scale, 
many of the existing technologies are not practical for both on-line and off-line data analysis and 
knowledge discovery processes. Solutions need to take advantage of data reduction methods, parallel 
processing, smart navigation, summarization, and manipulations of the massive datasets. New 
methods for achieving better efficiency of searching, processing, exploring, and displaying 
information are needed. 

2.3. The energy reduction challenge 
Current focus in the design of future extreme scale machines is on using low power chips. However, 
even with such low power chips there is a high consumption of energy for data movement. According 

 
 

Figure 2. The rate of performance of disks is much lower than compute rates 
(Thanks to R. Freitas of IBM Almaden Research Center for providing some of the data) 



to recent publications (see for example [7]), about 70% of the extreme scale system power 
consumption will be due to data movement. Data movement includes three categories: within-node 
data movement, inter-node data movement, and memory-to-disk data movement. Within-node data 
movement refers to using the 5 levels of memory: registers, L1, L2, L3 cache, and main memory. 
Moving data to main memory is 200X more expensive in power consumption than moving it to L1 
only. This suggests the need to control where to save data on a temporary basis when performing 
various in-situ analysis and summarization functions. That will require the development of 
programming languages that provide explicit references to the levels of memory within-node.  

While within-node to main memory requires about 10 cycles, inter-node data movement is in the 
order of 100’s of cycles. This ratio of 1:10 or higher suggests the need to minimize such data 
movement. This requires the development of algorithms that minimize data movement for various in-
situ analysis tasks, as well as summarization, transposition, and indexing.  

Data movement to hard drives (disk) requires about 10,000 cycles, and the corresponding energy 
consumption. Obviously, minimizing what is stored on disk is a useful technique, but in addition it is 
important to avoid reading back from disk unnecessarily. For example, rather than dumping data to 
disk, and then generating indexes (which requires reading the entire dataset), it is better to generate the 
index in-situ before the data in written out to disk. Such indexes also help minimize the data read from 
disk for subsequent exploratory analysis. 

3. Overview of successful technologies in the SDM center  
Our approach to scientific data management is to employ an evolutionary development and 
deployment process: from research through prototypes to deployment and infrastructure. Accordingly, 
we have organized our activities in three layers that abstract the end-to-end data flow described above. 
We labeled the layers (from bottom to top in Fig. 3): 

• Storage Efficient Access (SEA)  
• Data Mining and Analysis (DMA) 
• Scientific Process Automation (SPA) 
 
The SEA layer is immediately on top of hardware, operating systems, file systems, and mass 

storage systems, and provides parallel data access technology, and transparent access to archival 
storage. The DMA layer, which builds on the functionality of the SEA layer, consists of indexing, 
feature identification, and parallel statistical analysis technology. The SPA layer, which is on top of 
the DMA layer, provides the ability to compose scientific workflows from the components in the 
DMA layer as well as application specific modules. 
 



 
 

4. Implications from SDM center experience 

4.1. Asynchronous I/O and Combining I/O Operations  
While great benefits have been seen for applications utilizing collective I/O routines, it is not always 
convenient, or even possible, for applications to adopt these interfaces. To provide most of the benefits 
of the techniques underlying collective I/O implementations to the widest array of applications, new 
software that combines and asynchronously stages data is necessary. This software is referred to as I/O 
delegation or I/O staging software. 

One such implementation developed as part of the SDM center, from Nisar et.al. [14], is a software 
layer in MPI-IO that utilizes a small subset of compute nodes (I/O delegates) as a location for data 
combining and to drive I/O. This layer is implemented at the bottom layer of the ROMIO MPI-IO 
implementation, where it intercepts all the system I/O requests initiated by ROMIO and redirects them 
to delegate nodes. The researchers incorporated a static approach to mapping file regions to I/O 
delegates that was proposed in our earlier work on MPI-IO file domains [9]. Experiments using the 
FLASH and S3D I/O kernels were performed on two parallel machines: Abe at NCSA and Franklin at 
NERSC. Their experiments show that using MPI independent I/O functions in the two application 
kernels can even outperform the same kernels using collective I/O, with the observed improvement 
ranging from 2.5 times to 15 times better I/O bandwidth. 

 
Figure 3. The three layers of technologies in the SDM center and the 
technologies supported (shown in the labeled boxes). 



Beyond the allocation of compute nodes and integration of I/O delegation and caching into I/O 
middleware like MPI-IO, techniques in the context of I/O forwarding have also been investigated. I/O 
forwarding software, such as the CNK on IBM Blue Gene/P systems and DVS on Cray XT systems, 
provides a conduit for transferring I/O operations on clients out to gateway, or I/O nodes that have 
direct access to storage systems. As part of a DOE/NSF funded collaborative effort a portable I/O 
forwarding system called IOFSL (I/O Forwarding Software Layer) is being developed in order to 
investigate how techniques that have proven successful in I/O delegation work can be applied in this 
new context [15, 21].  

4.2. Taking advantage of I/O libraries for in-situ processing  
Efficient Scientific Data Management (SDM) is both a necessity and a key enabler for conducting 
science at scale. This is because SDM goes beyond simply performing input and output for large-scale 
simulations. It also helps scientists create, manage, and use the entire data output pipeline, from the 
time data is generated by high end simulations, to the time it is analyzed and visualized. When doing 
so, efficiency is a necessity, because the large-scale simulations envisioned to run on future extreme 
scale machines will generate immense amounts of output data. At the same time, however, SDM is a 
key enabler for science because it is precisely these outputs that hold the key to future scientific 
discovery, and those outputs only become useful for attaining scientific goals and supporting scientific 
inquiry after they have been analyzed, evaluated, understood, visualized, stored, and/or transformed 
into the inputs required by coupled simulations. 

The critical importance to scientific discovery of the output data generated by future extreme scale 
simulations has prompted us to develop a 
componentized approach to data management. 
This approach, embodied in the Adaptable I/O 
System (ADIOS), not only enables high 
performance I/O at scale, but it also constitutes 
the beginning of a scalable approach to 
constructing, managing, and using the entire 
output pipelines used by high performance 
simulations. The ADIOS componentized output 
enables portable high performance across 
multiple machines, using diverse transports, 
and supporting both custom and standard file 
formats and data representations [12]. 
Furthermore, the PreDatA framework for 
immediate data analysis [23] interfacing with 
ADIOS permits users to efficiently apply to 
output, as it is being generated – in-transit – 
data annotation, indexing, reorganization, 
formatting, and immediate analysis actions, 
using a streaming services-based programming 
model. A processing workflow example is shown in Fig. 4. Its “data spaces” service takes a further 
step by providing explicit support for the kinds of data indexing and reorganization needed for code 
coupling [3]. The actions taken are in accordance with the resources provided to PreDatA, typically 
comprised of sets of nodes in a “staging area” reserved for PreDatA use by the application. 

The ADIOS framework, shown in Fig. 5, is an open source componentization of the I/O layer. It 
provides an easy-to-use programming interface that is uniform across multiple data formats. It enables 
the capture of metadata and provenance in the background without polluting the application software. 
In many cases, the performance of ADIOS is over 10x faster than other parallel output techniques. The 
second publically released version of the Adaptable I/O System [11] contains many new 
enhancements that allows users to use the PreDataA framework for I/O staging through the DataTap 

 
Figure 4. Workflow of three analysis pipelines. 
Red nodes have the highest priority that must be 
executed even if the application is blocked. Blue 
nodes can be skipped if there is no time for them. 



[2] method, and through the NSSI [17] method. ADIOS 1.2 also contains a new method, MPI-AMR, 
which is designed to maximize the I/O 
performance on the Lustre file system. ADIOS has 
many different methods that allow users to gain 
near “peak” I/O performance for some of the 
largest applications running at the leadership class 
facilities of the Department of Energy [10] [16]. 

4.3. Allow statistics to be added into files  
ADIOS contains a new log-file format [13],that is 
self-describing, and contains a redundancy of 
metadata operations to allow the format to be both 
efficient in reading and writing, and resilient. The 
Binary-Packed (BP) format not only supports 
flexible conversion to standard file formats, such as 
NetCDF and HDF5, but it also facilitates a 
summary inspection of the data, termed data 
characteristics. ADIOS collects local, simple 
statistical and/or analytical data during the output 
operation for use in identifying desired data sets. 
The characteristics included in ADIOS 1.2 contain 
the minimum, maximum, average, standard 
deviation of an array at each time step. These 
characteristics have been tested from a variety of 
applications, and have been shown to take <4% of 
the total I/O cost of the simulation. Histograms are 
also included as an “optional” characteristic, where 
users can indicate the break points for the histogram of an output variable. When a user inquires about 
variability in an ADIOS-BP dataset, they can pull out these statistics without reading through the 
entire dataset. The bpls [17] utility can allow users to quickly look at large scale datasets, and 
determine these characteristics for all variables in seconds for extreme scale files. 

4.4. In-memory code coupling 
One of the methods inside the ADIOS framework is DataSpaces [6] which is an advanced 
coordination and interaction framework to provide the abstractions and mechanisms to support flexible 
and dynamic inter-application collaboration at runtime. DataSpaces uses Remote Direct Memory 
Access (RDMA) which is optimized for fast, asynchronous data transfers with low latency and small 
overheads. DataSpaces enables direct memory-to-memory communication between the nodes of 
distinct applications through RDMA. DataSpaces also enables the overlap of computations and 
communication allowing better utilization of the computing resources. By employing DataSpaces as a 
method in ADIOS, users can couple codes together with using I/O operations (open, write, read, close) 
as if writing into a file and reading from it.  

The API used in ADIOS with the DataSpaces method, allows application scientists to change from 
file based coupling to in-memory coupling, with only changing the method used in ADIOS at runtime. 
The implementation consists of a client component that is integrated with the two application codes 
and allows for dynamic data exchange at run time, and a space component that runs in a set of 
dedicated “staging nodes”, see Fig. 6. One of the advantages of using DataSpaces is that it allows 
users to use a Partitioned Global Address Space (PGAS) PGAS-like programming model. 
  

 
Figure 5. The ADIOS componentized I/O 
framework. The feedback mechanism and the 
services in the Staging area are proposed 
extensions. 



 

4.5. Web-based tools for monitoring, analysis, and data understanding  
The Framework for Integrated End-to-end SDM Technologies (FIESTA) [4], has been used by several 
application groups to automate and monitor large scale simulations. One of the components of the 
FIESTA framework is the extendible, web-based, dashboard (eSimMon) [19] which is a front-end for 
simulation monitoring and analysis which helps scientists monitor, manage, visualize, and collaborate 
with other scientists. An example of the web-based screen is shown in Fig. 7. eSimMon uses Adobe 
Flash on the client side, and a combination of PHP, Python, and MySQL on the server side. The focus 
of using this technology, along with the provenance capturing system in the Kepler [1] workflow 
system, is to remove the data 
manipulation barrier from 
application scientists, such as 
file locations and formats, and 
allow them to focus on the 
science. 

On the back end, eSimMon 
uses PHP and the MySQL 
database to make the links 
between user requests on the 
interface and (BP, NetCDF, 
HDF5) data files. The Kepler 
workflow records provenance 
information in the database, 
which the dashboard can query 
to provide the linkage from the 
visualization on the dashboard 
and the actual data file. The 
recorded provenance includes 
the history of all of the data 
transformations, all of the operations that were executed, and the environment information, combined 
with the source code of the executed simulations and all actions of the users on the data. The 
provenance information is the key in enabling eSimMon to hide the details from the users and raise the 
focus from files to scientific variables. 

The latest enhancement to eSimMon allows users to think of this environment as a Data Analysis 
Facility [TPK+10]. ESimMon now includes many analysis features, which can allow users to use 

 
Figure 6. DataSpaces provides an abstract data space for exchanging data 
between applications 

 
Figure 7. An example of a web-based dashboard for monitoring 
and evaluating simulations progress 



statistical analysis packages, R and Matlab, run on a remote resource. Users can upload their Matlab 
scripts, modify the input parameters, and share with their collaborators. These analysis services are run 
on analysis systems where the user uploaded them, and the underlying workflow technology of 
ESimMon can move data to the analysis service, or move the analysis to the data. 

4.6. In-situ analysis in I/O or Staging nodes – a pipeline example  
We have developed new technologies for managing the petascale resources used by high-end 
applications. Examples include scheduling methods that ensure that the I/O actions taken by HPC 
codes do not interfere with the codes' internal communications and in-memory support for code 
coupling via the increasingly common notion of “staging areas” on petascale machines. A further 
example is the ADIOS service-based approach for associating with HPC codes, which provides the 
functionality needed not only to output the enormous data volumes of HPC applications with high 
performance, but also to quickly analyze data and make it accessible to end users interested in 
scientific insights derived from their applications.  

PreDataA adds to the current I/O stack data staging and in-transit processing capabilities. PreDataA 
resides on both the compute nodes, and the staging nodes, and dynamically decides on where different 
types of analysis can take place. PreDataA provides a framework, into which users can “plug-in” 
analysis or other data intensive processes. The advantage of using the PreDataA framework is that it 
can reduce the data being output to the file system, which becomes increasingly important as we move 
to the extreme scale.  

We use two types of programming models inside our framework. The first is a stream processing 
programming model, which is shown in Fig. 8, which is similar to the map-reduce framework [5]. 
Each staging node is 
responsible for processing a 
stream of packed data 
chunks, with each chunk 
from separate compute 
processes. The processing of 
the streams is done in five 
stages, as shown in [20]. 
Together, this is similar to, 
but somewhat different than 
map-reduce, as described in 
[24]. By combining the 
PGAS-like programming model in DataSpaces, along with the PreDataA framework, we are exploring 
new opportunities in creating flexible programming models for users to “plug-in” their analysis, data 
reduction, visualization, and data indexing routines. 

4.7. In-situ data summarization and reduction  
In addition to performing analysis along the I/O pipeline, analysis and data reduction may also be 
performed on the nodes on which computation is occurring. This has the distinct advantage of 
allowing analysis routines to operate without the overhead of remote access to data, but requires that 
analysis routines scale to the number of nodes that the simulation is using and that these routines have 
methods for accessing the dataset in the simulation's native format(s). 

Yu et al. provide a good example of this type of approach, integrating both volume and particle 
rendering into a combustion code running at as many as 15 thousand cores [23]. The approach is not 
limited strictly to performing analysis at runtime. In separate work, by selectively compressing the 
dataset itself Wang et al. [22] were able to reduce the amount of data stored for analysis by 20-30x 
while maintaining fidelity at regions of interest and the flexibility to choose and adjust parameters 
such as viewpoints and transfer functions after the fact. This is shown in Fig. 9, where the feature of 

 
Figure 8. PreDatA streamlined processing pipeline 



interest in this case is the mixture fraction with an iso value of 0.2 (white surface), and the colored 
regions are a volume rendering of the HO2 variable. 

4.8. Other methods to address 
I/O challenges 

While much of the discussion 
here has covered software that 
sits between applications and 
the file system, parallel file 
systems themselves are in 
need of change. The hardware 
architecture of current HPC 
storage systems is not as cost 
effective as those used in data 
intensive computing 
environments [8], but HPC 
parallel file systems were not 
designed to operate reliably on faulty commodity components. Improvements in storage software will 
enable extreme scale storage solutions at a new price point. Likewise, the POSIX file system interface 
is increasingly hindering performance. New data models that deliver high productivity as well as high 
performance to computational scientists need to be supported throughout the I/O software stack, rather 
than being applied on top of this antiquated interface. It is all these approaches in concert, from in situ 
analysis to new and more effective data models that will enable us to meet the data volume and I/O 
challenges to come. 

4.9. Indexing 
In many scientific applications, to gain insight from massive amounts of data, the scientists have to 
locate a relatively small number of data records that hold the key information. For example, in a study 
of turbulent combustions, these special data records might be called ignition kernels. In a study of 
laser-wakefield particle accelerators, these special data records might be called particle bunches. 
Sifting through mountains of data to locate these “interesting” data records is a significant challenge. 
To meet this challenge, we have been developing and expanding an indexing software package called 
FastBit. An example showing parallel coordinate visualization display using FastBit for real-time 
selection of particle of interest (e.g. energetic particles) is shown in Fig. 10. This work, performed in 
collaboration with the Vacet Visualization center, replaced the existing IDL based analysis program 

 
Figure 9. Stored values can be reduced significantly by showing 
details only for regions of interest. [Data courtesy J. Chen (SNL), 
image courtesy H. Yu (SNL)]. 

 
Figure 10. An example of query-driven visualization using FastBit indexes 



with a FastBit based program, resulting in a three orders of magnitude speedup (from 300 seconds to 
0.3 seconds), as reported in [18] for laser-wakefield particle accelerators, along with several other 
application areas. 

FastBit is based on an indexing technique called bitmap index. This type of index is well-suited for 
searching scientific data where the data records usually remain unchanged after they are created. 
Taking advantage of this “read-only” (or “read-mostly”) nature, FastBit indexes are designed to 
answer queries fast by sacrificing some efficiency in updating the indexes. This allows us to package 
the indexing data structures tightly, reduce the I/O requirement when answering a query and improve 
query response time. Additionally, FastBit is designed to work with user data in their existing formats, 
instead of demanding the user data to be transform into a particular format or loaded into a database 
management system. This flexibility makes it possible for users to accelerate their search operations 
with a minimal amount of change to their existing data analysis framework.  

Efficient indexing of data is useful for both in-situ analysis and post-processing exploratory 
analysis. Having indexes available while the data is generated will allow in-situ monitoring, subset 
selection, and in-situ visualization in the extreme scale. For post-processing, generating the index 
while the data is generated saved the cost of generating the index after the data is saved on disk. 

5. Summary 
To address the data volume challenge, the main goal is to minimize the data to be stored. This can be 
done with several techniques: (1) perform in situ and co- analysis when possible, using extra cores, 
GPUs, I/O nodes, and staging nodes; (2) summarize data in-situ using parallel statistics methods, and 
enhance parallel algorithms to be performed by piece-wise statistical computation, taking advantage of 
multi-cores and GPUs; (3) avoid sending data to disk when it is only needed temporarily, such as data 
from uncertainty quantification (UQ) runs, when only summaries of each run are needed; (4) perform 
monitoring of simulation progress in situ, using staging nodes to support workflows (or pipelines); 
(5) keep details of data to be moved to disk only in regions of exploration, and summarize in other 
regions (as was shown in Fig.9). 

To address the energy challenge, the goal is to minimize data movement. Several techniques can 
be used: (1) store intermittent data, such as checkpoint data, on large NVRAM (non-volatile random 
access memory) rather than move to disk. Similarly, monitoring data can be stored on NVRAM, with 
appropriate tools for displaying results on web-based dashboards; (2) create indexes in-situ using extra 
core(s) to generate partial indexes, then combine results; (3) collect multiple “writes” and move them 
asynchronously when possible; (4) perform code-coupling in memory; (5) minimize data access after 
it is stored on disk – take advantage of indexing; (6) keep analysis operations as close to the stored 
data as possible; (7) continue to keep data that is needed long term on tape archives since they require 
no energy when not in use; (8) during post-processing exploratory analysis, bring from tape as needed 
using index information, power down disks when possible based on access patterns, or use multi-speed 
disks (a disk in “stand-by” mode requires only one-tenth of the energy of a full spin mode), and use 
NVRAM to front disks to hold frequently accessed files. 

We believe that a combination of such techniques will be necessary to make future extreme scale 
machines effective and avoiding clogging them with unnecessary data. 
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