
ADIOS: Powering I/O to extreme scale computing

Q. Liu,1 S. Klasky,1 N. Podhorszki,1 J. Lofstead,2 H. Abbasi,2 C.S. Chang,3
J. Cummings,4 D. Dinakar,5 C. Docan,6 S. Ethier,7 R. Grout,8 T. Kordenbrock,9
Z. Lin,10 X. Ma,5 R. Oldfield,11 M. Parashar,6 A. Romosan,13 N. Samatova,5
K. Schwan,2 A. Shoshani,13,Y. Tian,12 M. Wolf,2 W. Yu,12 F. Zhang,6 F. Zheng2
1Oak Ridge National Laboratory, TN
2Georgia Tech, GA
3New York University NY
4California Institute of Technology, CA
5North Carolina State University, NC
6Rutgers University, NJ
7Princeton Plasma Physics Laboratory, NJ
8National Renewable Energy Laboratory, CO
9HP, Nashville, TN
10UC Irvine, CA
11Sandia National Laboratory, NM
12Auburn University, AL
13Lawrence Berkeley National Laboratory, CA

Abstract. The Adaptable I/O System (ADIOS) provides a simple, flexible way for scientists to
describe the data in their code that may need to be written, read, or processed outside of the
running simulation. By providing an XML file, external to the application code, describing the
various elements, their types, and how you wish to process them in this run, the routines in the
application code can transparently change how they process the data. The goal of this system is
to give a level of adaptability such that the scientist can change how the I/O in their code works
simply by changing a single entry in the XML file and restarting the code. This brings ADIOS
the capability of performing advanced data services such as data staging and adaptive I/O.

1. Introduction
The Adaptable I/O System (ADIOS) [1] developed at Oak Ridge National Laboratory provides a
simple, flexible way for scientists to manage their data in the code that may need to be written, read, or
processed during simulation runs. ADIOS utilizes an external XML file to describe user data, e.g., data
types, sizes and I/O operations. As such, the routines in the user code can transparently change the
way they process data. In particular, the XML includes data hierarchy, data type specifications,
process grouping and how to process the data. These settings in the XML file are read on code startup
and, based upon them, the data will be processed differently. For example, one can select MPI I/O to
write out a single shared file for analysis output or POSIX I/O to write out one file per process for
checkpoint/restart data. Different setups make the code behave differently without having to either
change or recompile the source code. The primary goal of this I/O system is to offer a level of
adaptability such that the scientist can change the I/O transport simply by changing a single attribute in
the XML file. A high-level illustration of ADIOS is shown in Figure 1 and Figure 2.

Figure 1. Adaptable I/O System.

Figure 2. Sample ADIOS XML file.

In ADIOS Each I/O operation is based upon a particular data collection (a.k.a adios group), writing
or reading, and then calling close. The following code snippet shows a typical ways of using ADIOS
API.

adios_open (&group_handle, io_group, “restart.bp”, comm)
adios_group_size (group_handle, adios_groupsize, &adios_totalsize);
adios_write (group_handle, “comm”, comm)
adios_write (group_handle, “zion”, zion)
adios_write (group_handle, “mzeta”, mzeta)
adios_close (group_handle)

adios_group_size passes per-process size information to the ADIOS library, which is necessary when
writing into one shared file by several processes. The second input parameter is the raw data size and
the third output parameter is the returned total data size including metadata. The string second
parameter to adios_write specifies which var in the XML the provided data represents. Note that
adios_close is considered a “commit” operation. Once it returns, all provided buffers are considered
reusable. ADIOS 1.2 and later releases also provide a programmable API, which targets specifically at
adaptive-type codes, such as Adaptive Mesh Refinement (AMR) codes. For such applications, the data
is usually unknown a priori, for example, the level of refinements. Additional API’s are added to allow
users to define their data during runtime. Latest I/O methods in ADIOS also offer (1) adaptive I/O
(2) data staging, i.e., NSSI staging and DataTap, which are detailed next.

2. Managing I/O Variability in ADIOS
Variability in file system performance due to concurrent use has existed since multi-user operating
systems were developed, causing parallel file systems to employ rich caching and other performance
management techniques for their internal storage targets. The internal and external interference effects
seen in parallel file systems, however, are not adequately addressed by these techniques. We have
developed a new set of dynamic and proactive methods for managing I/O interference. These adaptive
I/O methods improve I/O performance by dynamically shifting work from heavily used areas of the
storage system to those that are more lightly loaded. By using adaptive I/O, we have been able to
substantially improve the I/O performance of petascale codes, including that of fusion simulations like
GTC, XGC1, GTS, and Pixie3D. These codes generate restart and analysis data every 15 or
30 minutes, on the full scale of the system, and production data size is generally between 64 MB and
200 MB per process. For a typical petascale run of around 150,000 processes, 200 MB per process
yields 3 TB to be written every 30 minutes. Staying within a generally acceptable 5% of wall clock
time spent in I/O limit, this requires a minimum sustained speed of 35 GB/sec. With the current Lustre
limit of a maximum of 160 storage targets for a single file, and a per storage target theoretical
maximum performance of around 180 MB/sec, a maximum of only 28 GB/sec can be achieved in

<adios-config host-language=“C”>
<adios-group name=“temperature” coordination-communicator=“comm”>
 <var name=“NX” type=“integer”/>
 <var name=“t” type=“double” dimensions=“NX”/>
</adios-group>
<method group=“temperature” method=“MPI”/>
<buffer size-MB=“1” allocate-time=“now”/>
</adios-config>

theory, assuming perfectly tuned I/O routines and an otherwise quiet system. Removing this limit can
address internal interference, of course, but it does not help with external interference in a busy
system. In response, adaptive I/O is designed so as to cope with both internal and external interference
effects, the goal being to consistently achieve >50% of peak I/O performance.

Experimental results presented in [2] assess and diagnose the presence and effects of internal and
external interference in petascale storage systems. Based on the insights gained from these evaluations,
adaptive I/O methods are implemented in the context of the ADIOS I/O middleware, and are now
widely deployed for petascale codes. The outcome is a substantial improvement in I/O performance,
ranging from around 2x the average performance for a 16384 process run of XGC1 to more than 4.8x
for the 16384 process run of Pixie3D with 16 TB output per I/O, all with less variability in the time
spent performing I/O (Figure 3).

Figure 3. Pixie3D I/O Performance.

3. NSSI Staging in ADIOS
The Network-Scalable Service Interface (NSSI) [5] is a framework for data services developed as part
of the the Lightweight File Systems Project [4]. NSSI is a remote procedure call (RPC) based library
that is designed to be scalable and handle large I/O. It uses XDR [6] to encode requests and remote
direct-memory access (RDMA) to transfer data to and from the client application. The library makes
separate RDMA requests for large data segments, which are not XDR encoded. Thus, most copying of
request and response data is avoided. The server coordinates the sending and receiving of these large
data segments, so it is not overwhelmed by client requests. NSSI currently has implementations for
Portals-based networks [3], such as those for the Cray XT series, and InfiniBand networks.

NSSI Staging in ADIOS is composed of two components—a client method and a staging service.
The client method differs from other ADIOS methods in that it does not perform any file I/O directly
to the file system. Instead, the client method translates ADIOS calls into remote requests to the staging
service. Client requests fall into two categories—pass-through and caching. Pass-through requests are
synchronous on the staging service and return an error immediately upon failure. Pass-through
requests are small, relatively quick operations that will generally become metadata operations for the
file system. If the staging service cannot perform these operations, all future operations on this file
(including expensive data operations) will fail so the small overhead of these operations is incurred.
Caching requests are asynchronous on the staging service. Caching requests could be small or large,
but are directly tied to the transfer, placement or transformation of bulk data.

The NSSI Staging service is a parallel application launched concurrently with an ADIOS client
application that acts as a proxy for ADIOS procedures. The staging service is itself an ADIOS
application, so it can be configured to use any method provided by ADIOS. When the staging service
receives a caching request, it pulls the data from the client into a local buffer on the service, then adds
the buffer to an aggregation list. When the client indicates that is has finished writing data, the staging
service performs as much aggregation as possible, then executes the necessary ADIOS calls to write
the data to persistent storage. The idea is to provide a large enough buffer in the network to absorb

large bursts of I/O, then filter the I/O to the storage system during the compute-intensive phase of the
application. With sufficient memory in the network, the application should observe effective I/O rates
at the speed of the network instead of the storage system.

Staging performance has been measured
using an ADIOS micro-benchmark that
generates a single 3D global array on the
Jaguar Cray XT5 system at the Oak Ridge
National Laboratory. Figure 4 shows the
measured performance results of two different
experiments: writing a single shared file using
the NetCDF4 method (no staging) and writing
a single shared file using NetCDF4 through the
staging service. Each experiment wrote 10MB
per compute core to the file. The staging
service required 1/32 additional compute nodes
to make sure the data remained in-core for the
output dump. The Lustre file system was
configured with a stripe size of 4MB and a
stripe count of 128. Results on Jaguar show
that unstaged NetCDF4 to a single shared file
has miserable performance, maxing out at
251MB/s. The staged NetCDF4 was able to
achieve an “effective” 8.05GB/s to a single shared file. This is the rate observed by the application as
the time to transfer the data from the application to the set of staging service nodes. In cases where the
staging service has sufficient memory and a sufficiently long compute phase of the application, the
staging service results in a 60x improvement in I/O performance with only 1/32 additional compute
resources.

4. Data Staging with EnStage
EnStage is an enhanced data staging infrastructure developed at the Oak Ridge National Laboratory
and Georgia Tech. The motivations underlying the research into EnStage are the increasingly stringent
demands of I/O from current and next generation scientific applications. With very high data rates the
storage subsystem becomes a bottleneck limiting the performance and scalability of the entire
application. Alleviating this bottleneck can be accomplished by either improving the storage
subsystem by adding faster disks, more OST (Object Storage Targets), or the platform can present a
different mechanism for I/O that can utilize existing resources to improve the I/O situation.

4.1. Staging
The later approach has led us to consider the advantages of using staging for I/O. We define staging as
the utilization of additional compute area resources for providing transient storage and compute
capacity. Thus instead of the application “writing” data to storage, staging provides a level of
indirection to the process. In the staging approach to I/O the application outputs the data to staging,
where it can undergo further processing and the staging area is responsible for the final transfer of the
data to the storage subsystem [8]. For the purpose of clarity, we next define some of the terms for the
reader.

Staging Area: A collection of nodes that are selected to serve as a transient location for temporary
storage and processing. These nodes are not functionally different from other nodes used in the
computational application, but are re-purposed to enhance the I/O pipeline.

DataTap: The DataTap is a lightweight application library that enables the use of the “DataTap”
ADIOS transport method for the application. DataTap utilizes RDMA to enable a request-read data

Figure 4. By staging ADIOS data in a partition of
compute nodes, the application sees effective I/O
rates between 2x and 60x larger than writing
directly to the parallel file system.

transport model, allowing for the application to scale without placing restriction on the size of the
staging area.

DataStager: The DataStager [7] is the counterpart of the DataTap residing within the
staging area. The DataStager is responsible for reading the data from the DataTap, as well as
aggregating the data for further processing within the staging area.

4.2. DataTap and DataStager
The DataTap is the foundation of the staging transport within ADIOS. Instead of transferring the entire
output buffer while the application waits for completion, the DataTap transport only transmits a small
request message to the staging area. Once received, this message is queued up in the staging area and
eventually serviced by the DataStager. The DataStager processes each of the queued requests, utilizing
a variety of selection criteria to pick the more appropriate request for servicing. Once a request has
been selected the DataStager issues a remote read request to the source. The data transfer is thus
completed and the DataStager passes the message to a user defined handler.

A significant portion of the DataStager is devoted to selecting the right request from the queue. The
first step in this determination is a check to see if the available memory in the DataStager can buffer
the entire data message. As data is read in, is processed and finally retired, the level of available
memory in the system varies greatly. Due to the large difference in the scale of the memory
available to the application and to the memory available to the staging area, moving the
control of data movement to the staging area is the only efficient method for handling this
imbalance. While the most basic memory check will apply to all requests there are a number
of checks that the user can enable. DataStager issues concurrent data read requests when
sufficient local memory is available, but this approach can result in unnecessary perturbation
with intra-application communication. Another, more complex, check is for the current phase
of the source node. Scientific applications operate in phases and there are periods of time
when the node is only involved in computation. Transferring the data during this time avoids
the problems associated with interference on a shared network link. This perturbation
avoidance scheduler allows the staging area to be used with very scalable applications without
a significant performance penalty from interference.

Acknowledgement
This work is jointly supported by US DOE Office of Fusion Energy Science and Office of Advanced
Scientific Computing Research.

References
[1] Lofstead, J, Zheng, F, Klasky, S, and Schwan, K. “Adaptable, Metadata Rich IO Methods for

Portable High Performance IO”, In Proceedings of IPDPS, Rome, Italy, May, 2009.
[2] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kordenbrock, K. Schwan, and M. Wolf,

“Managing Variability in the IO Performance of Petascale Storage Systems,” to appear in SC
2010.

[3] Ron Brightwell, Tramm Hudson, Arthur B. Maccabe, and Rolf Riesen, The Portals 3.0 message
passing interface. Technical Report SAND99-2959, Sandia National Laboratories, November
1999.

[4] Ron A. Oldfield, Arthur B. Maccabe, Sarala Arunagiri, Todd Kordenbrock, Rolf Riesen, Lee
Ward, and Patrick Widener. Lightweight I/O for scientific applications. In Proceedings of the
IEEE International Conference on Cluster Computing, Barcelona, Spain, September 2006.

[5] Ron A. Oldfield, et al., Efficient data-movement for lightweight I/O. In Proceedings of the 2006
High Performance I/O Techniques and Deployment of Very Large Scale I/O Systems, Barcelona,
Spain, September 2006.

[6] Sun Microsystems, Inc. RFC 1014: XDR: External Data Representation standard, June 1987.

[7] Abbasi, H., Wolf, M., Eisenhauer, G., Klasky, S., Schwan, K., and Zheng, F. 2009. DataStager:
scalable data staging services for petascale applications. In Proceedings of HPDC, Germany,
June 2009.

[8] H. Abbasi, J. Lofstead, F. Zheng, S. Klasky, K. Schwan, and M. Wolf, “Extending I/O through
High Performance Data Services.” Cluster Computing 2009, New Orleans, LA. August 2009.

