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Abstract. The Adaptable I/O System (ADIOS) provides a simple, flexible way for scientists to 
describe the data in their code that may need to be written, read, or processed outside of the 
running simulation. By providing an XML file, external to the application code, describing the 
various elements, their types, and how you wish to process them in this run, the routines in the 
application code can transparently change how they process the data. The goal of this system is 
to give a level of adaptability such that the scientist can change how the I/O in their code works 
simply by changing a single entry in the XML file and restarting the code. This brings ADIOS 
the capability of performing advanced data services such as data staging and adaptive I/O. 

1. Introduction 
The Adaptable I/O System (ADIOS) [1] developed at Oak Ridge National Laboratory provides a 
simple, flexible way for scientists to manage their data in the code that may need to be written, read, or 
processed during simulation runs. ADIOS utilizes an external XML file to describe user data, e.g., data 
types, sizes and I/O operations. As such, the routines in the user code can transparently change the 
way they process data. In particular, the XML includes data hierarchy, data type specifications, 
process grouping and how to process the data. These settings in the XML file are read on code startup 
and, based upon them, the data will be processed differently. For example, one can select MPI I/O to 
write out a single shared file for analysis output or POSIX I/O to write out one file per process for 
checkpoint/restart data. Different setups make the code behave differently without having to either 
change or recompile the source code. The primary goal of this I/O system is to offer a level of 
adaptability such that the scientist can change the I/O transport simply by changing a single attribute in 
the XML file. A high-level illustration of ADIOS is shown in Figure 1 and Figure 2.  



  

Figure 1. Adaptable I/O System. 

 

Figure 2. Sample ADIOS XML file. 

In ADIOS Each I/O operation is based upon a particular data collection (a.k.a adios group), writing 
or reading, and then calling close. The following code snippet shows a typical ways of using ADIOS 
API. 

 
adios_open (&group_handle, io_group, “restart.bp”, comm) 
adios_group_size (group_handle, adios_groupsize, &adios_totalsize); 
adios_write (group_handle, “comm”, comm) 
adios_write (group_handle, “zion”, zion) 
adios_write (group_handle, “mzeta”, mzeta) 
adios_close (group_handle) 
 

adios_group_size passes per-process size information to the ADIOS library, which is necessary when 
writing into one shared file by several processes. The second input parameter is the raw data size and 
the third output parameter is the returned total data size including metadata. The string second 
parameter to adios_write specifies which var in the XML the provided data represents. Note that 
adios_close is considered a “commit” operation. Once it returns, all provided buffers are considered 
reusable. ADIOS 1.2 and later releases also provide a programmable API, which targets specifically at 
adaptive-type codes, such as Adaptive Mesh Refinement (AMR) codes. For such applications, the data 
is usually unknown a priori, for example, the level of refinements. Additional API’s are added to allow 
users to define their data during runtime. Latest I/O methods in ADIOS also offer (1) adaptive I/O 
(2) data staging, i.e., NSSI staging and DataTap, which are detailed next. 

2. Managing I/O Variability in ADIOS 
Variability in file system performance due to concurrent use has existed since multi-user operating 
systems were developed, causing parallel file systems to employ rich caching and other performance 
management techniques for their internal storage targets. The internal and external interference effects 
seen in parallel file systems, however, are not adequately addressed by these techniques. We have 
developed a new set of dynamic and proactive methods for managing I/O interference. These adaptive 
I/O methods improve I/O performance by dynamically shifting work from heavily used areas of the 
storage system to those that are more lightly loaded. By using adaptive I/O, we have been able to 
substantially improve the I/O performance of petascale codes, including that of fusion simulations like 
GTC, XGC1, GTS, and Pixie3D. These codes generate restart and analysis data every 15 or 
30 minutes, on the full scale of the system, and production data size is generally between 64 MB and 
200 MB per process. For a typical petascale run of around 150,000 processes, 200 MB per process 
yields 3 TB to be written every 30 minutes. Staying within a generally acceptable 5% of wall clock 
time spent in I/O limit, this requires a minimum sustained speed of 35 GB/sec. With the current Lustre 
limit of a maximum of 160 storage targets for a single file, and a per storage target theoretical 
maximum performance of around 180 MB/sec, a maximum of only 28 GB/sec can be achieved in 

 
<adios-config host-language=“C”> 
<adios-group name=“temperature” coordination-communicator=“comm”> 
  <var name=“NX” type=“integer”/> 
  <var name=“t” type=“double” dimensions=“NX”/> 
</adios-group> 
<method group=“temperature” method=“MPI”/> 
<buffer size-MB=“1” allocate-time=“now”/> 
</adios-config> 



theory, assuming perfectly tuned I/O routines and an otherwise quiet system. Removing this limit can 
address internal interference, of course, but it does not help with external interference in a busy 
system. In response, adaptive I/O is designed so as to cope with both internal and external interference 
effects, the goal being to consistently achieve >50% of peak I/O performance. 

Experimental results presented in [2] assess and diagnose the presence and effects of internal and 
external interference in petascale storage systems. Based on the insights gained from these evaluations, 
adaptive I/O methods are implemented in the context of the ADIOS I/O middleware, and are now 
widely deployed for petascale codes. The outcome is a substantial improvement in I/O performance, 
ranging from around 2x the average performance for a 16384 process run of XGC1 to more than 4.8x 
for the 16384 process run of Pixie3D with 16 TB output per I/O, all with less variability in the time 
spent performing I/O (Figure 3).  

 

 

Figure 3. Pixie3D I/O Performance. 
 

3. NSSI Staging in ADIOS 
The Network-Scalable Service Interface (NSSI) [5] is a framework for data services developed as part 
of the the Lightweight File Systems Project [4]. NSSI is a remote procedure call (RPC) based library 
that is designed to be scalable and handle large I/O. It uses XDR [6] to encode requests and remote 
direct-memory access (RDMA) to transfer data to and from the client application. The library makes 
separate RDMA requests for large data segments, which are not XDR encoded. Thus, most copying of 
request and response data is avoided. The server coordinates the sending and receiving of these large 
data segments, so it is not overwhelmed by client requests. NSSI currently has implementations for 
Portals-based networks [3], such as those for the Cray XT series, and InfiniBand networks. 

NSSI Staging in ADIOS is composed of two components—a client method and a staging service. 
The client method differs from other ADIOS methods in that it does not perform any file I/O directly 
to the file system. Instead, the client method translates ADIOS calls into remote requests to the staging 
service. Client requests fall into two categories—pass-through and caching. Pass-through requests are 
synchronous on the staging service and return an error immediately upon failure. Pass-through 
requests are small, relatively quick operations that will generally become metadata operations for the 
file system. If the staging service cannot perform these operations, all future operations on this file 
(including expensive data operations) will fail so the small overhead of these operations is incurred. 
Caching requests are asynchronous on the staging service. Caching requests could be small or large, 
but are directly tied to the transfer, placement or transformation of bulk data. 

The NSSI Staging service is a parallel application launched concurrently with an ADIOS client 
application that acts as a proxy for ADIOS procedures. The staging service is itself an ADIOS 
application, so it can be configured to use any method provided by ADIOS. When the staging service 
receives a caching request, it pulls the data from the client into a local buffer on the service, then adds 
the buffer to an aggregation list. When the client indicates that is has finished writing data, the staging 
service performs as much aggregation as possible, then executes the necessary ADIOS calls to write 
the data to persistent storage. The idea is to provide a large enough buffer in the network to absorb 



large bursts of I/O, then filter the I/O to the storage system during the compute-intensive phase of the 
application. With sufficient memory in the network, the application should observe effective I/O rates 
at the speed of the network instead of the storage system.  

Staging performance has been measured 
using an ADIOS micro-benchmark that 
generates a single 3D global array on the 
Jaguar Cray XT5 system at the Oak Ridge 
National Laboratory. Figure 4 shows the 
measured performance results of two different 
experiments: writing a single shared file using 
the NetCDF4 method (no staging) and writing 
a single shared file using NetCDF4 through the 
staging service. Each experiment wrote 10MB 
per compute core to the file. The staging 
service required 1/32 additional compute nodes 
to make sure the data remained in-core for the 
output dump. The Lustre file system was 
configured with a stripe size of 4MB and a 
stripe count of 128. Results on Jaguar show 
that unstaged NetCDF4 to a single shared file 
has miserable performance, maxing out at 
251MB/s. The staged NetCDF4 was able to 
achieve an “effective” 8.05GB/s to a single shared file. This is the rate observed by the application as 
the time to transfer the data from the application to the set of staging service nodes. In cases where the 
staging service has sufficient memory and a sufficiently long compute phase of the application, the 
staging service results in a 60x improvement in I/O performance with only 1/32 additional compute 
resources. 

4. Data Staging with EnStage 
EnStage is an enhanced data staging infrastructure developed at the Oak Ridge National Laboratory 
and Georgia Tech. The motivations underlying the research into EnStage are the increasingly stringent 
demands of I/O from current and next generation scientific applications. With very high data rates the 
storage subsystem becomes a bottleneck limiting the performance and scalability of the entire 
application. Alleviating this bottleneck can be accomplished by either improving the storage 
subsystem by adding faster disks, more OST (Object Storage Targets), or the platform can present a 
different mechanism for I/O that can utilize existing resources to improve the I/O situation.  

4.1. Staging 
The later approach has led us to consider the advantages of using staging for I/O. We define staging as 
the utilization of additional compute area resources for providing transient storage and compute 
capacity. Thus instead of the application “writing” data to storage, staging provides a level of 
indirection to the process. In the staging approach to I/O the application outputs the data to staging, 
where it can undergo further processing and the staging area is responsible for the final transfer of the 
data to the storage subsystem [8]. For the purpose of clarity, we next define some of the terms for the 
reader.  

Staging Area: A collection of nodes that are selected to serve as a transient location for temporary 
storage and processing. These nodes are not functionally different from other nodes used in the 
computational application, but are re-purposed to enhance the I/O pipeline. 

DataTap: The DataTap is a lightweight application library that enables the use of the “DataTap” 
ADIOS transport method for the application. DataTap utilizes RDMA to enable a request-read data 

 

Figure 4. By staging ADIOS data in a partition of 
compute nodes, the application sees effective I/O 
rates between 2x and 60x larger than writing 
directly to the parallel file system. 

 



transport model, allowing for the application to scale without placing restriction on the size of the 
staging area.  

DataStager: The DataStager [7] is the counterpart of the DataTap residing within the 
staging area. The DataStager is responsible for reading the data from the DataTap, as well as 
aggregating the data for further processing within the staging area.  

4.2. DataTap and DataStager 
The DataTap is the foundation of the staging transport within ADIOS. Instead of transferring the entire 
output buffer while the application waits for completion, the DataTap transport only transmits a small 
request message to the staging area. Once received, this message is queued up in the staging area and 
eventually serviced by the DataStager. The DataStager processes each of the queued requests, utilizing 
a variety of selection criteria to pick the more appropriate request for servicing. Once a request has 
been selected the DataStager issues a remote read request to the source. The data transfer is thus 
completed and the DataStager passes the message to a user defined handler.  

A significant portion of the DataStager is devoted to selecting the right request from the queue. The 
first step in this determination is a check to see if the available memory in the DataStager can buffer 
the entire data message. As data is read in, is processed and finally retired, the level of available 
memory in the system varies greatly. Due to the large difference in the scale of the memory 
available to the application and to the memory available to the staging area, moving the 
control of data movement to the staging area is the only efficient method for handling this 
imbalance. While the most basic memory check will apply to all requests there are a number 
of checks that the user can enable. DataStager issues concurrent data read requests when 
sufficient local memory is available, but this approach can result in unnecessary perturbation 
with intra-application communication. Another, more complex, check is for the current phase 
of the source node. Scientific applications operate in phases and there are periods of time 
when the node is only involved in computation. Transferring the data during this time avoids 
the problems associated with interference on a shared network link. This perturbation 
avoidance scheduler allows the staging area to be used with very scalable applications without 
a significant performance penalty from interference. 
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