
Expressive feature characterization for ultrascale data
visualization

W Kendall,1 M Glatter,1 J Huang,1 T Peterka,2 R Latham,2 and R B Ross2
1Department of Electrical Engineering and Computer Science, The University of
Tennessee at Knoxville, Knoxville, TN 37996, USA

2Mathematics and Computer Science Division, Argonne National Laboratory, Argonne,
IL 60439, USA

E-mail: kendall@eecs.utk.edu

Abstract. The grand challenge for visualization is to cast information into insightful content so
scientists can test hypotheses and find phenomena not possible otherwise. This challenge is
faced with a critical gap in the scientists’ abilities to succinctly characterize phenomena of
interest in their datasets. Furthermore, as applications generate larger and more complex
datasets, efficiently retrieving the features of interest becomes a significant problem. In this
paper we discuss recent achievements and new capabilities in the characterization and extraction
of qualitative features. We also outline the necessary components needed by a backend system to
use this new capability and operate in the same environment as the scientific applications. Our
methods have allowed us to scale to high process counts on leadership computing resources and
have also allowed us to keep pace with the growing size of scientific datasets. We discuss our
efforts of examining qualitative events in cutting-edge climate data.

1. Introduction
Visualization is the primary tool for scientists among a wide array of domains to gain insight into
complex phenomena, whether it is the core collapse of a supernova or major ocean eddies and currents.
One of the primary components that is tied in directly with the visualization process is the ability to
describe these types of features in a way that is understandable to the human and the computer.
Furthermore, the retrieval of the features plays a crucial role in the interactivity of visual analysis. With
dataset sizes increasing to hundreds of terabytes and beyond, feature retrieval becomes a first-class
problem along with characterization.

Our recent research on feature specification methods has led to new capabilities to concisely define
and visualize qualitative user interests, for example, the “beginning of spring”event in climate modeling
or the extinction regions through time in fuel combustion. In one novel approach, we used a regular
expression language for finding temporal trends in datasets [3]. In another, we used statistical
distributions of variables in neighborhoods for visualizing local characteristics of volumetric datasets
[5]. These methods, along with many other works, have one main and simple generic requirement—the
issuing of Boolean range queries. This simple requirement allows for the building of powerful systems
on top of the methods.

Besides new functionalities for expressive feature characterization, we also focused on scalability in
anticipation of extreme-scale challenges. Our prototype system, outlined in Figure 1, successfully
extracted climatic events from over a terabyte of observational satellite data in less than one minute

Figure 1. An overview of our end-to-end system. Data stored from a simulation is first read using
advanced I/O techniques. The necessary data structures are then built for load-balanced querying to take
place. After this, the user can issue queries using a higher-level language and aggregate the results. A
reduction can be applied to the results before analysis and visualization.

using 16 K processes; this time included parallel I/O, parallel on-the-fly processing, and parallel
visualization [6]. Harnessing this type of computing power offers a virtually unlimited ability to search
for and extract features of interest. Scalability such as this is also needed for visualization to keep pace
with peta- and future exascale supercomputers. In the following, we provide a holistic overview of the
various components that are required by such a system, details of our methods for expressive feature
characterization, and sample results from our techniques when applied to terascale observational climate
data.

2. System Components
To be successful on the user and application level, the design of our end-to-end system is driven with
usability and scalability in mind. We also keep the issuing of range queries as a black box for
encapsulation by other higher-level tools. Figure 1 overviews the system in terms of three major
components: parallel I/O, distributed data structures, and analysis.

2.1. Parallel I/O
The I/O component is the most challenging part of the system. The scalability of I/O systems is
hampered by many factors, and even seemingly advanced I/O techniques might not be effective for
certain problems. For usability, the system requires handling data formats familiar to the scientist, which
makes the problem even more difficult.

Working with data directly from simulations, i.e., “native application” form, requires performing I/O
on higher-level file formats like netCDF and HDF stored across multiple time-varying files. Our system
elegantly handles data in this format by first assigning files to processes in a way to maximize
contiguous I/O requests and then using the Block I/O Layer (BIL) to read data across multiple files and
variables. Significant I/O bandwidth increases can be obtained when using multicollective I/O
techniques [7] for reading multiple files and variables at once, especially when smaller files would not
individually warrant the use of high parallelism.

This method allowed us to achieve up to 28 GB/s bandwidth performance on the Cray XT4 Jaguar
machine at Oak Ridge National Laboratory, which is 75% of reported IOR benchmark performance tests
[2]. Performance such as this in an application setting is critical in reducing the latency between the end
of simulations and analysis and visualization.

2.2. Distributed Data Structures
In our studies [4], we have found that using a structure similar to a B-tree for query processing adheres
closest to our system design goals. The ability to search arbitrary amounts of data with unlimited
cardinality provides the required usability, and the potential to easily partition the tree in an
embarrassingly parallel fashion supplies the needed scalability. The storage overhead of our tree
structure is also minimal and usually less than one percent of the dataset size.

Beneath the tree, the data is stored at the granularity of individual items that contain the following
queryable elements: scalar or vector values of the voxel they represent, spatiotemporal quantities, and
other on-the-fly derived properties. The items are distributed to each process in such a way to enhance
load-balanced query results; we found that randomly distributing items achieved a low distribution
overhead while giving ideal load balance. This method has allowed us to achieve significant
performance increases at every scale up to 16 K processes [6]. With such scalability, the querying

component of our system is effectively unbounded and allows for more sophisticated analysis and
querying languages to be built on top of it.

2.3. Analysis
The analysis component of the system is built on top of a familiar parallel programming paradigm
known as MapReduce [1]. In MapReduce, the user maps a value to a key and then the keys are sorted so
that a reduction can be applied to the values from each key in parallel. This programming concept is
applicable to a wide variety of problems in data mining and document indexing, and it can also be
applied to many types of scientific analyses.

When querying has been completed in our system, the relevant items can then be sorted by a key,
such as the spatial or temporal dimensions or variable values from the query. This allows for more
sophisticated types of analyses such as temporal differencing or clustering to be applied. The usability of
the system is further extended to more powerful querying languages that can take advantage of ordering
of results; one such example from climate science that requires this feature, drought detection, and other
examples are outlined in the following section.

3. Feature Characterization and Visualization
Our feature characterization is driven by the fact that the scientists’ definition of the features they expect
to find may be precise or vague. In both of these scenarios, the complexity of the dataset plays a major
role in feature exploration. When simulations produce datasets that have many variables, timesteps, and
even many models, the use of a higher-level ability to quickly and comprehensively explore data is
necessary. Specifically, the ability to provide “wildcards” allows for exploring a greater degree of
uncertainty about the dataset.

3.1. Regular Expression Framework
A language with the qualities of regular expressions fits in this framework and provides the ability to
succinctly characterize features. The language is modeled after the work of [3]. This research showed
the effectiveness of using a language to discover temporal events. For example, the query ???[SNOW ≤
0.7]*T[SNOW > 0.7]?* detects the first large snowfall. The first three question marks indicate that it
does not matter what values of snow are present during January, February, and March. [Snow ≤ 0.7]*
represents a low snowfall for zero or more months after March, and T[Snow > 0.7] returns the first
month T in which the snowfall reached the 0.7 threshold. The months after this do not matter and are
represented with the question mark followed by the asterisk. T values and items that matched the query
are returned to visualize the event of first snowfall.

We are currently extending this language and developing components that will allow discovery of
more sophisticated features. One such example, ?*[VEG < 0.5 & WATER < 0.3]^4?*, is a query for
drought. The caret followed by the four indicates that low water and vegetation must occur for at least
four timesteps in a row to be considered a drought. We are also exploring another extension to the
language that will permit querying of neighborhood and cluster-based features. Describing features in
this way showed a wide variety of uses in [5] and it would be useful to interactively perform these
queries on large datasets.

3.2. Case Study—MODIS
We applied our backend system to over a terabyte of observational Moderate Resolution Imaging
Spectroradiometer (MODIS) data. The dataset contains vegetation and water indices over a 500-meter
resolution sampling of North and South America (31,200 × 21,600 grid) spanning 417 timesteps over
9 years; each timestep is stored in a separate file. We used the Jaguar XT4 machine at Oak Ridge
National Laboratory which consists of 7,832 quad-core 2.1 GHz AMD Opteron processors and a Lustre
parallel file system.

To obtain a better understanding of the length of a snow season in MODIS, we issued the query
represented by ?*T[0.7 ≤ WATER ≤ 0.9]?*T[0.4 ≤ VEG ≤ 0.6]?*. The returned ܶ variables are

the first occurrences of high water content (a likely indicator of snow) and vegetation green up; the
difference of these provides an approximated length of the snow season. A visualization from the year
2006 is shown in Figure 2. Some obvious structures can be seen, such as an abnormally long snow
season in the ski resorts of Colorado and the Northern Rocky Mountains in Canada. We can also observe
distinct contours in snow season length when entering the Boreal Forest in Canada. Some anomalies like
the Amazon Rainforest are returned because of the abnormally high water content in the area, our
original definition for snow.

Figure. 2. Overview of the length of snow season. This visualization was created by querying the time
lag between the first occurrences of abnormally high water content (an indicator for snow) and
vegetation green up. Some notable areas are marked such as the ski resorts in Colorado, which have long
snow seasons. Other areas like the Amazon Rainforest are returned because of the naturally high amount
of water content, our original indicator for snow.

Application timing is shown in Figure 3. The reading time includes the entire time it took to query the
netCDF data for variable information, assign I/O to processes, and then read the data in memory. The
processing time includes filtering out useless content (e.g., ocean values), redistributing the data for
load-balanced querying, and locally sorting the data. Querying, reducing, and writing the images are
summarized and shown as an aggregate.

The application executed in slightly over one minute at the largest scale, a seemingly insignificant
amount of time in comparison to the amount of data being processed. I/O was the dominant component
of the application, taking 46 seconds at 16 K processes. We reached our peak reading rates at 2 K
processes, and I/O performance degraded slightly when scaling higher; this phenomena has also been
observed in other scenarios when using high process counts for I/O on Jaguar [2]. The other components
of the system scaled well at high process counts. Processing the entire dataset took as little as 8 seconds.
All 18 queries (2 hemispheres for each of the 9 years) were completed in 0.51 seconds and returned
11 billion relevant items. At 16 K processes, all items were reduced in 4.8 seconds for temporal analysis
and it took 2 seconds overall to write the 9 images for each year.

Figure 3. Timing results for the MODIS application. The results include
component times for reading and processing data, along with an aggregate
timing for querying, reducing, and writing results. The total application time is
shown as a sum of these components.

4. Summary
The ability to describe complex events using a mini programming language is powerful. High-level
languages enable intuition-led discovery of conceptual features that may involve a multitude of
uncertainties. Supported by a scalable backend, our approach provides a powerful means of application
science research, and also a promise of continued scalability at extreme scales.

We learned crucial lessons in the designing of an ultrascale visualization system that closely
integrates sophisticated I/O together with full-range processing and analysis of data in native application
formats. We have embedded our know-how into two open source packages: SQI—our backend
querying system, and BIL—our multi-file parallel I/O library for visualization and analysis. Downloads
are freely available at ifundefinedselectfont http://seelab.eecs.utk.edu.

Acknowledgments
Funding for this work is primarily through the Institute of Ultra-Scale Visualization
(http://www.ultravis.org) under the auspices of the SciDAC program within the U.S. Department of
Energy (DOE). System development was supported in part by a DOE Early Career PI grant awarded to
Jian Huang (No. DE-FG02-04ER25610) and by NSF grants CNS-0437508 and ACI-0329323. MODIS
data was provided by NASA (http://modis.gsfc.nasa.gov). Resources were used from the National
Center for Computational Science at Oak Ridge National Laboratory, which is managed by UT-Battelle,
LLC, for DOE under Contract No. DE-AC05-00OR22725.

References
[1] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In OSDI ‘04:

6th Symp. on Operating System Design and Implementation, 2004.
[2] M. R. Fahey, J. M. Larkin, and J. Adams. I/O performance on a massively parallel Cray XT3/XT4.

In IEEE Intl Symp. on Parallel and Distributed Processing, pages 1–12, 2008.

[3] M. Glatter, J. Huang, S. Ahern, J. Daniel, and A. Lu. Visualizing temporal patterns in large
multivariate data using textual pattern matching. IEEE Trans. on Visualization & Computer
Graphics, 14(6):1467–1474, 2008.

[4] M. Glatter, C. Mollenhour, J. Huang, and J. Gao. Scalable data servers for large multivariate
volume visualization. IEEE Trans. on Visualization & Computer Graphics, 12(5):1291–1299,
2006.

[5] C. R. Johnson and J. Huang. Distribution driven visualization of volume data. IEEE Trans. on
Visualization & Computer Graphics, 15(5):734–746, 2009.

[6] W. Kendall, M. Glatter, J. Huang, T. Peterka, R. Latham, and R. Ross. Terascale data organization
for discovering multivariate climatic trends. In SC ’09: Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, pages 1–12, 2009.

[7] G. Memik, M. T. Kandemir, W.-K. Liao, and A. Choudhary. Multicollective I/O: A technique for
exploiting inter-file access patterns. ACM Trans. on Storage, 2(3):349–369, 2006.

