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Abstract. The grand challenge for visualization is to cast information into insightful content so 
scientists can test hypotheses and find phenomena not possible otherwise. This challenge is 
faced with a critical gap in the scientists’ abilities to succinctly characterize phenomena of 
interest in their datasets. Furthermore, as applications generate larger and more complex 
datasets, efficiently retrieving the features of interest becomes a significant problem. In this 
paper we discuss recent achievements and new capabilities in the characterization and extraction 
of qualitative features. We also outline the necessary components needed by a backend system to 
use this new capability and operate in the same environment as the scientific applications. Our 
methods have allowed us to scale to high process counts on leadership computing resources and 
have also allowed us to keep pace with the growing size of scientific datasets. We discuss our 
efforts of examining qualitative events in cutting-edge climate data.  

1. Introduction 
Visualization is the primary tool for scientists among a wide array of domains to gain insight into 
complex phenomena, whether it is the core collapse of a supernova or major ocean eddies and currents. 
One of the primary components that is tied in directly with the visualization process is the ability to 
describe these types of features in a way that is understandable to the human and the computer. 
Furthermore, the retrieval of the features plays a crucial role in the interactivity of visual analysis. With 
dataset sizes increasing to hundreds of terabytes and beyond, feature retrieval becomes a first-class 
problem along with characterization. 

Our recent research on feature specification methods has led to new capabilities to concisely define 
and visualize qualitative user interests, for example, the “beginning of spring”event in climate modeling 
or the extinction regions through time in fuel combustion. In one novel approach, we used a regular 
expression language for finding temporal trends in datasets [3]. In another, we used statistical 
distributions of variables in neighborhoods for visualizing local characteristics of volumetric datasets 
[5]. These methods, along with many other works, have one main and simple generic requirement—the 
issuing of Boolean range queries. This simple requirement allows for the building of powerful systems 
on top of the methods. 

Besides new functionalities for expressive feature characterization, we also focused on scalability in 
anticipation of extreme-scale challenges. Our prototype system, outlined in Figure 1, successfully 
extracted climatic events from over a terabyte of observational satellite data in less than one minute  



 

Figure 1. An overview of our end-to-end system. Data stored from a simulation is first read using 
advanced I/O techniques. The necessary data structures are then built for load-balanced querying to take 
place. After this, the user can issue queries using a higher-level language and aggregate the results. A 
reduction can be applied to the results before analysis and visualization.  
 
using 16 K processes; this time included parallel I/O, parallel on-the-fly processing, and parallel 
visualization [6]. Harnessing this type of computing power offers a virtually unlimited ability to search 
for and extract features of interest. Scalability such as this is also needed for visualization to keep pace 
with peta- and future exascale supercomputers. In the following, we provide a holistic overview of the 
various components that are required by such a system, details of our methods for expressive feature 
characterization, and sample results from our techniques when applied to terascale observational climate 
data. 

2. System Components 
To be successful on the user and application level, the design of our end-to-end system is driven with 
usability and scalability in mind. We also keep the issuing of range queries as a black box for 
encapsulation by other higher-level tools. Figure 1 overviews the system in terms of three major 
components: parallel I/O, distributed data structures, and analysis. 

2.1. Parallel I/O 
The I/O component is the most challenging part of the system. The scalability of I/O systems is 
hampered by many factors, and even seemingly advanced I/O techniques might not be effective for 
certain problems. For usability, the system requires handling data formats familiar to the scientist, which 
makes the problem even more difficult. 

Working with data directly from simulations, i.e., “native application” form, requires performing I/O 
on higher-level file formats like netCDF and HDF stored across multiple time-varying files. Our system 
elegantly handles data in this format by first assigning files to processes in a way to maximize 
contiguous I/O requests and then using the Block I/O Layer (BIL) to read data across multiple files and 
variables. Significant I/O bandwidth increases can be obtained when using multicollective I/O 
techniques [7] for reading multiple files and variables at once, especially when smaller files would not 
individually warrant the use of high parallelism. 

This method allowed us to achieve up to 28 GB/s bandwidth performance on the Cray XT4 Jaguar 
machine at Oak Ridge National Laboratory, which is 75% of reported IOR benchmark performance tests 
[2]. Performance such as this in an application setting is critical in reducing the latency between the end 
of simulations and analysis and visualization. 

2.2. Distributed Data Structures 
In our studies [4], we have found that using a structure similar to a B-tree for query processing adheres 
closest to our system design goals. The ability to search arbitrary amounts of data with unlimited 
cardinality provides the required usability, and the potential to easily partition the tree in an 
embarrassingly parallel fashion supplies the needed scalability. The storage overhead of our tree 
structure is also minimal and usually less than one percent of the dataset size. 

Beneath the tree, the data is stored at the granularity of individual items that contain the following 
queryable elements: scalar or vector values of the voxel they represent, spatiotemporal quantities, and 
other on-the-fly derived properties. The items are distributed to each process in such a way to enhance 
load-balanced query results; we found that randomly distributing items achieved a low distribution 
overhead while giving ideal load balance. This method has allowed us to achieve significant 
performance increases at every scale up to 16 K processes [6]. With such scalability, the querying 



component of our system is effectively unbounded and allows for more sophisticated analysis and 
querying languages to be built on top of it. 

2.3. Analysis 
The analysis component of the system is built on top of a familiar parallel programming paradigm 
known as MapReduce [1]. In MapReduce, the user maps a value to a key and then the keys are sorted so 
that a reduction can be applied to the values from each key in parallel. This programming concept is 
applicable to a wide variety of problems in data mining and document indexing, and it can also be 
applied to many types of scientific analyses. 

When querying has been completed in our system, the relevant items can then be sorted by a key, 
such as the spatial or temporal dimensions or variable values from the query. This allows for more 
sophisticated types of analyses such as temporal differencing or clustering to be applied. The usability of 
the system is further extended to more powerful querying languages that can take advantage of ordering 
of results; one such example from climate science that requires this feature, drought detection, and other 
examples are outlined in the following section. 

3. Feature Characterization and Visualization 
Our feature characterization is driven by the fact that the scientists’ definition of the features they expect 
to find may be precise or vague. In both of these scenarios, the complexity of the dataset plays a major 
role in feature exploration. When simulations produce datasets that have many variables, timesteps, and 
even many models, the use of a higher-level ability to quickly and comprehensively explore data is 
necessary. Specifically, the ability to provide “wildcards” allows for exploring a greater degree of 
uncertainty about the dataset. 

3.1. Regular Expression Framework 
A language with the qualities of regular expressions fits in this framework and provides the ability to 
succinctly characterize features. The language is modeled after the work of [3]. This research showed 
the effectiveness of using a language to discover temporal events. For example, the query ???[SNOW ≤ 
0.7]*T[SNOW > 0.7]?* detects the first large snowfall. The first three question marks indicate that it 
does not matter what values of snow are present during January, February, and March. [Snow ≤ 0.7]* 
represents a low snowfall for zero or more months after March, and T[Snow > 0.7] returns the first 
month T in which the snowfall reached the 0.7 threshold. The months after this do not matter and are 
represented with the question mark followed by the asterisk. T values and items that matched the query 
are returned to visualize the event of first snowfall. 

We are currently extending this language and developing components that will allow discovery of 
more sophisticated features. One such example, ?*[VEG < 0.5 & WATER < 0.3]^4?*, is a query for 
drought. The caret followed by the four indicates that low water and vegetation must occur for at least 
four timesteps in a row to be considered a drought. We are also exploring another extension to the 
language that will permit querying of neighborhood and cluster-based features. Describing features in 
this way showed a wide variety of uses in [5] and it would be useful to interactively perform these 
queries on large datasets. 

3.2. Case Study—MODIS 
We applied our backend system to over a terabyte of observational Moderate Resolution Imaging 
Spectroradiometer (MODIS) data. The dataset contains vegetation and water indices over a 500-meter 
resolution sampling of North and South America (31,200 × 21,600 grid) spanning 417 timesteps over 
9 years; each timestep is stored in a separate file. We used the Jaguar XT4 machine at Oak Ridge 
National Laboratory which consists of 7,832 quad-core 2.1 GHz AMD Opteron processors and a Lustre 
parallel file system. 

To obtain a better understanding of the length of a snow season in MODIS, we issued the query 
represented by ?*T[0.7 ≤ WATER ≤ 0.9]?*T[0.4 ≤ VEG ≤ 0.6]?*. The returned ܶ variables are 



the first occurrences of high water content (a likely indicator of snow) and vegetation green up; the 
difference of these provides an approximated length of the snow season. A visualization from the year 
2006 is shown in Figure 2. Some obvious structures can be seen, such as an abnormally long snow 
season in the ski resorts of Colorado and the Northern Rocky Mountains in Canada. We can also observe 
distinct contours in snow season length when entering the Boreal Forest in Canada. Some anomalies like 
the Amazon Rainforest are returned because of the abnormally high water content in the area, our 
original definition for snow. 

 

 

Figure. 2. Overview of the length of snow season. This visualization was created by querying the time 
lag between the first occurrences of abnormally high water content (an indicator for snow) and 
vegetation green up. Some notable areas are marked such as the ski resorts in Colorado, which have long 
snow seasons. Other areas like the Amazon Rainforest are returned because of the naturally high amount 
of water content, our original indicator for snow.  
 

Application timing is shown in Figure 3. The reading time includes the entire time it took to query the 
netCDF data for variable information, assign I/O to processes, and then read the data in memory. The 
processing time includes filtering out useless content (e.g., ocean values), redistributing the data for 
load-balanced querying, and locally sorting the data. Querying, reducing, and writing the images are 
summarized and shown as an aggregate. 

The application executed in slightly over one minute at the largest scale, a seemingly insignificant 
amount of time in comparison to the amount of data being processed. I/O was the dominant component 
of the application, taking 46 seconds at 16 K processes. We reached our peak reading rates at 2 K 
processes, and I/O performance degraded slightly when scaling higher; this phenomena has also been 
observed in other scenarios when using high process counts for I/O on Jaguar [2]. The other components 
of the system scaled well at high process counts. Processing the entire dataset took as little as 8 seconds. 
All 18 queries (2 hemispheres for each of the 9 years) were completed in 0.51 seconds and returned 
11 billion relevant items. At 16 K processes, all items were reduced in 4.8 seconds for temporal analysis 
and it took 2 seconds overall to write the 9 images for each year. 



 

Figure 3. Timing results for the MODIS application. The results include 
component times for reading and processing data, along with an aggregate 
timing for querying, reducing, and writing results. The total application time is 
shown as a sum of these components.  
 

4. Summary 
The ability to describe complex events using a mini programming language is powerful. High-level 
languages enable intuition-led discovery of conceptual features that may involve a multitude of 
uncertainties. Supported by a scalable backend, our approach provides a powerful means of application 
science research, and also a promise of continued scalability at extreme scales. 

We learned crucial lessons in the designing of an ultrascale visualization system that closely 
integrates sophisticated I/O together with full-range processing and analysis of data in native application 
formats. We have embedded our know-how into two open source packages: SQI—our backend 
querying system, and BIL—our multi-file parallel I/O library for visualization and analysis. Downloads 
are freely available at ifundefinedselectfont http://seelab.eecs.utk.edu. 
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