
Quantum Monte Carlo algorithms: making most of large-scale
multi/many-core clusters

Jeongnim Kim,1 Kenneth P. Esler,1 Jeremy McMinis,2 and David M. Ceperley1,2

1National Center for Supercomputing Applications
2Department of Physics

University of Illinois at Urbana-Champaign, Urbana, IL, USA

Abstract. With advances in algorithms and the changing landscape of high performance
computers (HPC), the quantum Monte Carlo method has become a leading contender for high
accuracy calculations for the electronic structure of realistic systems. QMC, being statistical, is
naturally scalable to a large number of processors. We discuss QMC implementations to
overcome the important efficiency and scalability bottlenecks encountered with the HPC
systems based on the multi/many-core architecture of today and present state-of-art QMC
calculations of solid-state and molecular systems using tens or hundred thousand cores on the
petascale computers. Also presented are the solutions for QMC to adapt to the future HPC
architectures and to harness ever-increasing computing powers to tackle outstanding materials
and chemical problems.

1. Introduction
Continuum quantum Monte Carlo (QMC) methods employ explicitly correlated wavefunctions to
describe the many-body effects and symmetries in an efficient and compact manner and solve the
Schrödinger equation by a stochastic process [1]. QMC is one of the most accurate ab initio methods to
describe the behavior and properties of quantum many-particle systems. It is general and applicable to a
wide range of physical and chemical systems in any dimension, boundary conditions etc. The favorable
scaling, 3–4 power of the problem size, and ample opportunities of parallelizations, e.g., over multiple
Bloch k-vectors, make QMC methods uniquely powerful tools to study the electronic structure of
realistic systems on large-scale parallel computers.

Until recently, QMC methods have been able to exploit the steady increase in clock rates and
enhancement of performance enabled by advances in CMOS VLSI technology for faster and bigger
simulations [2]. However, we have seen some significant changes in the mode of increase of
computational power in this decade. The performance gain has been largely driven by increasing
parallelism in a shared-memory processor (SMP) unit in the form of multi-core processors and GPUs
(Graphics Processing Units). Emerging architectures will have an order of magnitude higher
concurrency and will force applications to deal with the heterogeneity and hierarchy in the memory,
processing and communication subsystems [3]. This presents challenges as well as opportunities for
QMC algorithms.

In this article, we discuss the design and implementation details of QMCPACK to take advantage of
clusters of multi-core processors and GPUs. QMCPACK, an open-source QMC simulation code written
in C++, implements advanced QMC algorithms for large-scale parallel computers [4]. It utilizes hybrid
(OpenMP,CUDA)/MPI approaches on multi/many-core architectures to achieve the high computational
efficiency, while minimizing communication overhead. We present an overview of applications enabled

by QMCPACK and conclude with the outlook of the QMC algorithms for the current and next
generations of HPC systems and our plans for emerging computing architectures.

1.1.QMC Methods
Various quantum Monte Carlo methods solve the time independent Schrödinger equation whose
solution, a many-body wavefunction Ψ(R) in a 3N configuration space R, satisfies an eigenvalue
equation of the form,

Here E is the ground-state energy for the system and is the Hamiltonian, or total energy operator.
Since the exact solution Ψ is known only for simple few-body systems, QMC methods employ a trial
wave function ΨT and find the ground-state solution either by minimizing the energy by varying
parameters in a ΨT as in variational Monte Carlo (VMC) method or by projecting out the ground state by
repeatedly applying an imaginary time Green’s function or propagator exp(–τ) on ΨT as in diffusion
Monte Carlo (DMC) method [1].

The vast majority of the computational time in an accurate QMC simulation is spent in DMC and
therefore minimizing the wall-clock time to obtain a DMC solution within a target error is desired. The
optimized computational kernels, physical abstractions and parallelization schemes, however, are also
applicable to all other QMC algorithms. We will use DMC to introduce the key concepts and
components as implemented in QMCPACK and to guide readers throughout this paper.

In the DMC algorithm, an ensemble of walkers (population) is propagated stochastically from
generation to generation, where each walker is represented by R. In each propagation step, the walkers
are moved through position space by a drift-diffusion process. At the end of each step, each walker may
reproduce itself, be killed, or remain unchanged (branching process), depending on the value of the local
energy at that point in space, EL(R) = ΨT (R)/ΨT (R). The walkers in an ensemble are tightly coupled
through a trial energy ET and a feedback mechanism to keep the average population at the target 103−105

walkers. This leads to a fluctuating population and necessitates shuffling of walkers among parallel
processing units to maintain good load balance in an appropriate interval.

1.2. QMC Applications
Figure. 1 highlights recent QMC calculations using the petascale systems at National Center for
Computational Sciences (NCCS) and Lincoln GPU cluster at NCSA. Highly scalable and efficient
implementations in QMCPACK have allowed QMC studies of the electronic structure of realistic systems
with great technological impacts, e.g., on energy, biological and microprocessor development.

Figure 1. (a) Binding energy of H2 to a benzene, (b) free-energy of liquid water and
(c) energetics of native defects in metals and semiconductors.

2. Hybrid QMC algorithms
Among many ways to parallelize DMC algorithm, the multiplicity of the walkers in an ensemble
provides the most natural units for data and task parallelizations. The internal state of each walker, its
configuration R and other data to reduce recomputing, is encapsulated in Walker class. The operations to
propagate each walker during the drift-diffusion process are expressed as a parallel loop over the
Walkers. Once a generation has evolved, the properties of all the walkers in an ensemble are collected to
determine ET and Nw, the number of walkers of the next generation, which employs global reduction
operations among MPI tasks. The redistribution of Walkers during the load-balance step can be
efficiently done by exchanging a serialized Walker object in a large message between paired MPI tasks.

We fully exploit the language features of C++ and standard libraries, e.g., allocators, to maximize
cache reuse, eliminate false sharing among threads, reduce the overhead in managing threads and
optimize MPI communications. There are several different and independent ways to parallelize a QMC
calculation beyond the walker level, e.g., over parameter and configuration spaces and over Bloch
k-vectors. Such high-level parallelism can be easily managed by mapping a DMC ensemble on a MPI
group and is not the subject of this article.

2.1. QMC on Clusters of Multi-Core SMPs
Figure 2(a) illustrates the distribution of Walkers among OpenMP threads and MPI tasks. This hybrid
OpenMP/MPI scheme has several advantages over the standard MPI-only scheme.

 Memory optimized: large read-only data to store one-body orbitals and other shared properties to
represent the trial wave function and many-body Hamiltonian can be shared among threads,
which reduces the memory footprint of a large-scale problem.

 Cache optimized: the data associated with an active Walker are in cache during the
compute-intensive drift-diffusion process and the operations on an Walker are optimized for
cache reuse. Thread-local objects are used to ensure the data affinity to a thread.

 Load balanced: Walkers in an ensemble are evenly distributed among threads and MPI tasks. The
two-level parallelism reduces the population imbalance among MPI tasks and reduces the number
of point-to-point communications of large messages (serialized objects) for the Walker exchange.

 Communication optimized: the communication overhead, especially for the collective operations
necessary to determine ET and measure the properties of an ensemble, is significantly lowered by
using less MPI tasks.

Figure 2. (a) Schematic view of Walker allocation per MPI task. Each Walker
object, shown as a box, contains R, weight and other data associated with it. (b)
Parallel efficiency of OpenMP/MPI hybrid runs on a Cray XT4 (dual quad-core
AMD Opteron) with respect to a run using a single core among 8 available cores per
node.

Effectiveness of the hybrid scheme is evident in Figure 2(b). The parallel efficiency remains high for

any combination of OpenMP threads and MPI tasks even at this modest scale of 512 cores. In fact, DMC

scales nearly perfectly with respect to the number of threads: the additional parallelism from
multithreading allows more walkers per MPI task and improves the overall parallel efficiency and load
balance among SMP nodes. The VMC efficiency reflects the memory bandwidth-limited nature of QMC
algorithms when all the cores are used. However, the performance reduction due to resource sharing on
a node, e.g., bandwidth, is insignificant and the added parallelism with more cores improves the
efficiency of a QMC simulation by increasing the rate of MC sample generation and, therefore, reducing
the time to solution to reach the target error bars of the quantities of interest. The parallel efficiency of
hybrid runs is affected by the memory architecture and is subject to the quality of compilers and MPI
implementations. In general, the optimal performance is obtained when a MPI task is mapped over a
NUMA node as shown in Figure 2(b) with 4 threads on a quad-core processor.

2.2. QMC on Clusters of GPUs
Recently, a path to significant jump in computational performance has become available through the use
of GPUs for general-purpose computation. These processors combine many floating point units and
relatively simple execution units with a very wide memory bus to allow dramatically higher peak
throughput than conventional CPUs. In order to make use of these capabilities, QMC algorithms are
reformulated to increase parallelism in the computational kernels: instead of operating on one Walker at
a time, which is optimal on cache-based CPUs, we reorder the loops so that each kernel works on all the
Walkers in parallel and parallelize the additional loops over the particles or orbitals. Accordingly, the
data structures are redesigned to make good use of the memory hierarchy of a GPU and capabilities are
added to efficiently manage data transfer between host and GPU. Using mixed precision on GT200
GPUs and MPI for intercommunication and load balancing, we observe typical full-application
speedups of 10× to 15× relative to quad-core Xeon CPUs alone, while reproducing the double-precision
CPU results within statistical error [5].

2.3. Performance of Hybrid QMC
In Figure 3, we show the calculated speedup for a DMC calculation of a defect in a 64 atom supercell
(260 electrons). The parallel efficiency of DMC, which compares the number of MC samples generated
in a given wall-clock time, shows near 95% of the ideal speedup up to 216K cores. The scalability of
CUDA/MPI is equally high, because the communication overhead can be effectively compensated by
increasing the computational load, i.e., by allocating more Walkers on a GPU than a CPU. On average,
QMCPACK achieves 25% of the peak performance on x86 systems, which amounts to 0.5 PF sustained
performance on jaguar-pf for the 216K-core runs. Our scaling studies expose the performance issues
with blocking collectives and parallel I/O at large scales. However, several practical solutions exist
including increased intervals between the synchronizations, asynchronous I/O and use of non-blocking
collectives [7].

Figure 3. (blue) DMC speedup normalized to
2400 cores. Shown in red is the DMC
performance including periodic checkpointing
using parallel HDF5 library [6]. The runs use
6 OpenMP threads per MPI task on Cray XT5
(jaguar-pf) systems at NCCS.

3. Conclusions
The quantum Monte Carlo method has exploited the steady increase of computational power over past
decades. Increasing parallelism in the form of multi-core SMPs or GPUs is not an exception. We
demonstrated that QMC implementations using (OpenMP,CUDA)/MPI hybrid programming model can
achieve high scalability and computational efficiency on the current generation of HPC systems. The barriers
for sustained petaflop QMC simulations are successfully removed by the hybrid methods which minimize the
memory use and communication overhead, while maximizing the use of available parallel processing units
on each platform. New developments are in progress to enhance QMC performance by employing
light-weight threads, one-sided communications and mixed precision, which will be increasingly critical on
the emerging architectures characterized by limited memory per processing unit, heterogeneity, and high
concurrency.

Acknowledgments
This work was supported by the U.S. Department of Energy (DOE) under contract No. DOE-
DE-FG05-08OR23336 and the U.S. National Science Foundation (NSF) under contract No. 0904572.
We used the resources of the National Center for Computational Sciences and the Center for Nanophase
Materials Sciences, which are sponsored by the respective facilities divisions of the offices of Advanced
Scientific Computing Research and Basic Energy Sciences of DOE under Contract No.
DE-AC05-00OR22725. Also utilized are the resources at NCSA and National Institute for
Computational Sciences through the NSF Teragrid program under TG-MCA93S030 and
TG-MCA07S016.

References
[1] Foulkes W M C, Mitas L, Needs R J, and Rajagopal G. 2001. Rev. Mod. Phys. 73 33–83.
[2] Esler K P, Kim J, Ceperley D M, Purwanto W, Walter E J, Krakauer H, Zhang S, Kent P R C,

Hennig R G, Umrigar C, Bajdich M, Kolorenc J, Mitas L, and Srinivasan A. 2008. Journal of
Physics: Conference Series 125 012057 (15 pp.).

[3] Dongarra J, Beckman P, Aerts P, Cappello F, Lippert T, Matsuoka S, Messina P, Moore T, Stevens
R, Trefethen A, and Valero M. 2009. Int. J. High Perform. Comput. Appl. 23 309–322 ISSN
1094-3420.

[4] Jeongnim Kim, K Esler, J McMinis, B Clark, J Gergely, S Chiesa, K Delaney, J Vincent, and
D Ceperley. QMCPACK simulation suite URL http://qmcpack.cmscc.org.

[5] Esler K, Kim J, Shulenburger L, and Ceperley D M. 2010. Fully accelerating quantum monte carlo
simulations of real materials on gpu clusters submitted to Computing in science and engineering.

[6] Hdf (hierarchical data format) URL http://hdf.ncsa.uiuc,edu/HDF5.
[7] Hoefler T, Lumsdaine A, and Rehm W. 2007. Proceedings of the 2007 International Conference

on High Performance Computing, Networking, Storage and Analysis, SC07 (IEEE Computer
Society/ACM).

