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Abstract. Density Functional calculations have proven to be a powerful tool to study the ground 
state of many materials. For finite temperatures the situation is less ideal and one is often forced 
to rely on models with parameters either fitted to zero temperature first principles calculations or 
experimental results. This approach is especially unsatisfactory in inhomogeneous systems, 
nano particles, or other systems where the model parameters could vary significantly from one 
site to another. Here we describe a possible solution to this problem by combining classical 
Monte Carlo calculations—the Wang-Landau method [2] in this case—with a first principles 
electronic structure calculation, specifically our locally self-consistent multiple scattering code 
(LSMS) [3]. The combined code shows superb scaling behavior on massively parallel 
computers. The code sustained 1.836 Petaflop/s on 223,232 cores of the Cray XT5 jaguar system 
at Oak Ridge.  

1. Introduction 
Density Functional based first principles electronic structure calculations for condensed matter systems 
have reached a high level of maturity over the last few decades and are now a standard tool for the study 
of ground state material properties [1]. While these methods have evolved to provide greater accuracy 
and deal with wider classes of materials, the field of finite temperature behavior has received less 
attention. The phase space usually is far too large to be dealt with directly. The usual methods of treating 
the thermodynamics of a physical system involve either the time evolution of an ensamble or the 
exploration of the most relevant parts of phase space by means of a Monte-Carlo method. Both these 
approaches require a large number of evaluations of the underlying Hamiltonian that describes the 
system (൐ ܱሺ10ହሻ), thus it is usually only feasible to treat severely simplified models that have to be 
designed to capture the essential physics, as opposed to a direct treatment of the Density-Functional 
Hamiltonian of the system. 

To overcome this limitation we have developed the hybrid Wang-Landau/LSMS (WL-LSMS) code. 
This code combines revcent advances in computational statistical mechanics, namely the Wang-Landau 
method [2] with the LSMS first principles method that has already demonstrated superb scalability on 
massively parallel machines. 
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2. Structure of WL-LSMS 
The WL-LSMS code uses a multi level parallelization scheme. At the top level, the code parallelizes 
over concurrent random walkers, where we use a master-slave scheme, with a master that accumulates 
the density of states of the system, and the slaves that execute the random walks, each running its own 
instance of the LSMS method. The second parallelization level is the LSMS portion of the code. In 
typical production runs, the WL method would use a hundred to a few thousand concurrent walkers, and 
the LSMS portion would be parallelized over up to a few thousand processing cores. The method hence 
will scale to hundred thousand or millions of processing cores. The schematics of the parallelization 
structure are shown in Figure 1. 

 

Figure 1. Parallelization strategy of the combined 
Wang-Landau/LSMS algorithm. The Wang- 
Landau process generates random spin 
configurations for ܯ walkers and updates a single 
density of states ݃ሺܧሻ. The energies for these ܰ 
atom systems are calculated by independent 
LSMS processes (Figure 2). This results in two 
levels of communication, between the Wang- 
Landau driver and the LSMS instances, and the 
internal communication inside the individual 
LSMS instances spanning ܰ processes each. 

 

Figure 2. Schematic, Left: LIZ centered at processor/atom ݅; Right: message passing and computation. 

3. The Wang-Landau Algorithm 
All thermodynamic potentials can be derived from the partition function  

 ܼሺܶሻ ൌ ׬  ݁ ିாሺࢄሻ/ሺ௞ಳ்ሻ݀(1) ࢄ 

where ܧሺࢄሻ is the internal energy of the system with the phase space described by the variable ࢄ in 
some high dimensional space consisting of all the microscopic degrees of freedom of the system (atomic 
positions, velocities, and/or magnetic moments). In importance sampling Monte Carlo simulations one 
performs a random walk through phase space that is biased in such a way that the walker spends most of 
the time where the integrand in equation (1) is largest, that is, where the energy ܧሺࢄሻ is small. 



The partition function in equation (1) can be rewritten in the form  

 ܼሺܶሻ ൌ ׬  ݃ ሺܧሻ݁ିா/ሺ௞ಳ்ሻ݀(2) ܧ 

where the density of states is defined as  

 ݃ሺܧሻ ൌ ׬ ܧሺߜ  െ  ሺܺሻሻ݀ܺ (3)ܧ

and ߜሺܧሻ is the Dirac ߜ-function. 
Flat histogram methods, such as the Wang-Landau algorithm, use the density of states, ݃ሺܧሻ, for 

importance sampling, thus accepting the new configuration with probability 

 minሾ1, ݃ሺܧ௜ሻ/݃ሺܧ௜ାଵሻሿ. (4) 

The effect is to create an equal probability of visiting each energy level in the system. 
The main obstacle of flat-histogram methods is that ݃ሺܧሻ is not known. Instead, an estimate of the 

density of states ෤݃ሺܧሻ must be constructed self-consistently as the Monte Carlo estimate is generated. 
The Wang-Landau algorithm accomplishes this as follows. It begins with a prior estimate of the density 
of states, ෤݃଴ሺܧሻ, which might be just a constant. Assuming that a Monte Carlo move to a new 
configuration with Energy ܧ௜ାଵ is accepted according to the criterion of equation (4), the density of 
states is updated with  

 lnሾ ෤݃ሺܧ௜ାଵሻሿ ← lnሾ ෤݃ሺܧ௜ାଵሻሿ ൅ ln݂ (5) 

where ݂ is the modification factor that is initially set to ln݂ ൌ 1. The modification factor is reduced in 
steps such that lnሺ݂ሻ ← lnሺ݂ሻ/2 and the density of states converges as lnሺ݂ሻ → 0. 

Since the systems we set out to study here have continuous degrees of freedom, ݃ሺܧሻ is a function 
of a continuous variable as well. Hence, we employ the kernel update scheme described by Zhou et al. 
[8]. 

4. The LSMS Algorithm 
For the energy evaluation, we employ the first principles framework of density functional theory (DFT) 
in in the local spin density approximation (LSDA). To solve the Kohn-Sham equations arising in this 
context, we use a real space implementation of the multiple scattering formalism. The details of this 
method for calculating the Green function and the total ground state energy ܧሾ݊ሺݎԦሻ, ሬ݉ሬԦሺݎԦሻሿ  are 
described elsewhere [3,4]. For the present discussion it is important to note that the computationally 
most intensive part is the calculation of the scattering path matrix ߬ for each atom in the system by 
inverting the multiple scattering matrix.  

 ߬ ൌ ሾܫ െ ଴ሿܩݐ
ିଵݐ  

The only part of ߬ that will be required in the subsequent calculation of site diagonal observables (i.e., 
magnetic moments, charge densities, and total energy) is a small (typically 32 ൈ 32) diagonal block of 
this matrix. This will allow us to employ the algorithm described in the next section for maximum 
utilization of the on node floating point compute capabilities. 

Most importantly for the application in the hybrid Wang-Landau LSMS method, our Locally 
Self-consistent Multiple Scattering (LSMS) method allows the possibility of non-collinear magnetism 
[5]. 

The orientation ݁̂௜ of the magnetic moment for each site is determined by  

 ݁̂௜ ൌ ׬  
ஐ೔
 Ԧݎ݀ ሬ݉ሬԦ௜ሺݎԦሻ/| ׬  

ஐ೔
 Ԧݎ݀ ሬ݉ሬԦ௜ሺݎԦሻ|.  

Since an arbitrary arrangement is not a DFT ground state we will have to deal with a constrained general 
state as presented by Stocks et al. [6,7]. In the constrained local moment (CLM) model the LSDA 
equations are solved subject to a constraint that ensures that the local magnetizations lie along the 
directions prescribed by ሼ Ԧ݁௜ሽ. Thus this method enables the calculation of the energies of arbitrary 
orientational states as generated by the Wang-Landau algoritm. 



5. Blockinversion in LSMS 
The most time consuming part of the LSMS calculation is the inversion of the multiple scattering matrix. 
The amount of computational effort can be reduced by utilizing the fact that for each local interaction 
zone only the left upper block (߬଴଴) of the scattering path matrix ߬ is required. In this section we 
describe an algorithm that reduces the amount of work needed while providing excellent performance 
due to its reliance on dense matrix-matrix multiplications that are available in highly optimized form in 
vendor or third party provided implementations (i.e., ZGEMM in the BLAS library). 

The method employed in LSMS to calculate the required block of the inverse relies on the well 
known expression for writing the invers of a matrix in term of inverses and products of subblocks:  

 ቀ
ܣ ܤ
ܥ ܦ

ቁ
ିଵ

ൌ ቀ
ܷ ܸ
ܹ ܻ

ቁ  

where  

 ܷ ൌ ሺܣ െ   ሻିଵܥଵିܦܤ

and similar expressions for ܸ, ܹ , and ܻ. This this method can be applied multiple times to the 
subblock ܷ until the desired block ߬଴଴ of the scattering path matrix is obtained. 

6. Performance 
We analysed the performance of the code for systems consisting of both 250 and 1024 Fe atoms 
respectively. For these systems we study the scaling properties of the code as a function of number of 
walkers used in the WL simulation. Every individual LSMS calculation per walker can be distributed 
onto 250 or 1024 cores. On the Cray XT5 jaguarpf system at ORNL's National Center for 
Computational Sciences (NCCS), we can thus scale these calculations to up to 895 parallel WL walkers 
for 250 atoms on 223,752 cores and 218 walkers on 223,232 cores for 1024 Fe atoms. In these 
performance analysis runs, each walker executes 20 WL steps, which is far fewer than a real 
simulations. 

In Figure 3 we show how the time to solution scales if we increase the number of WL walkers, and 
thus the total number of samples taken in the WL-LSMS simulation. The result shown thus represent a 
weak scaling plot, and the scaling behavior of the WL-LSMS method looks close to optimal. We find a 
similarly optimal strong scaling behavior, if we fix the number of samples taken for every run and 
increase the number of walkers. With the available size of machines today, we are still far from 
saturating the method in terms of scaling behavior. 

 

Figure 3. (left) The weak scaling behavior of the WL-LSMS code for 250 and 1024 atom systems with 
a varying number of Wang-Landau walkers. The times shown represent the total runtime of the code and 
include the startup costs of the calculations. This accounts for the jump in the runtime for the 250 atom 
systems as each Wang-Landau walker reads its initial input file. (right) The sustained performance of 
the Wang-Landau LSMS code on jaguarpf for systems of 250 iron atoms (blue squares) and 1024 atoms 
(red circles). The code reaches a performance of 1.755 Petaflop/s on 223,752 cores for 250 atoms and 
1.835 Petaflop/s on 223,232 cores for a 1024 atom system. 



The sustained floating point performance of the runs that correspond are shown also in Figure 3. In 
order to measure the executed floating point operations of the benchmark runs, we have instrumented 
the WL-LSMS code with PAPI calls. rFor the largest runs with 218 parallel Wang-Landau walkers of 
1024 atoms each and 20 steps per walker, the measured sustained performances was 1.835 petaflop/s, 
which on the 223,232 AMD Opteron cores running at 2.6 GHz corresponds to a fraction of 79.0% of the 
theoretical peak performance. 

7. Magnetic transition temperature for iron  
Here we present a calculation of the magnetic transition temperature (Curie temperature) of iron. 
Utilizing the methods and algorithm described above we consider a periodically repeated cells of 
250 iron atoms and converge the Wang-Landau density of states ݃ሺܧሻ for changes in the magnetization 
direction on the individual iron sites. For the underlying LSMS calculation of these iron cells, the atoms 
were placed on a body-centered cubic lattice with a lattice parameter of 5.42ܽ଴, corresponding to the 
experimental value, and the local interaction zone has a radius of 11.5ܽ଴ . The self-consistently 
converged potential for the ferromagnetic ground state was used for all the individual frozen-potential 
energy calculations in the combined Wang-Landau/LSMS algorithm. 

Using 400 Wang-Landau walkers the calculation converged in 590,000 and required 4,885,720 
CPU hours on the jaguar Cray XT5 system. The resulting density of states is shown in Figure 4 and 
Figure 5. While the computational resources needed for a system with several hundred atoms are 
considerable, the remaining calculations to compute any desired temperature dependent thermodynamic 
properties is marginal. 

 

Figure 4. The unnormalized logarithmic 
Wang-Landau density of states ln݃ሺܧሻ  for a 
periodic system of 250 iron atoms, respectively. 

 

Figure 5. Free Energy ܨ′ for a system of 250 iron 
atoms. 

 
With this density of states the partition function that describes the thermodynamics of the system can 

be calculated for any temperature. 
These calculation yields a transition temperature of 980K. This result is in remarkably good 

agreement with the experimentally known Curie temperature of bulk iron of 1050K.  



8. Summary 
In the present paper we have demonstrated our approach for the first principles treatment of finite 
temperature behavior of magnetic systems. The combination of the most recent massively parallel 
supercomputing architectures and advances in both algorithmic developments and most importantly 
new computational methods have made this hybrid statistical mechanics/first principles method 
feasible. 

The code presently is applicable to the evaluation of magnetic transition temperatures of transition 
metal alloys and has already reproduced the Curie temperature of bulk Iron [9]. 
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