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Abstract. The parquet formalism to calculate the two-particle Green’s functions of large 
systems requires the solution of a large, sparse, complex system of quadratic equations. If Nf 
Matsubara frequencies are used for a system of size Nc, and Newton’s method is used to solve 
the nonlinear system, the Jacobian system has O(8Nt

3) variables and O(40Nt
4) complex entries 

where Nt = NcNf. For Nt = 1024, the nonlinear system has over 8.5 billion degrees of freedom 
and the sparse Jacobian will require over 351 TBytes of memory. The Jacobian is very 
expensive to store but the matrix-vector products can be computed directly. We are developing 
a highly scalable parallel solver that uses both OpenMP and MPI to exploit the multicore 
nodes. We present initial scalability results on the Cray XT5 that suggests the code can be 
scaled to solve larger problems with Nt ≥ 1024. 

1. Introduction 
The two-dimensional Hubbard model has been accepted in the community as a minimum model to 
study the high-temperature superconducting cuprates. An adequate solution of this model is extremely 
challenging, especially in the interesting parameter regime of intermediate to strong coupling, where 
the Coulomb repulsion between electrons is of the same order or stronger than the electronic kinetic 
energy. Despite some recent success, our understanding of the properties of this model in this regime 
is therefore still limited. 

The Hubbard Hamiltonian on a square lattice is written as 

 

where ܿ௜,ఙ
ற  (ci,) creates (destroys) an electron with spin  on site i and ni, = ܿ௜,ఙ

ற  ci, is the 
corresponding occupation operator. The first term describes the hopping of electrons between sites i 
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and j and the second term stands for the Coulomb repulsion U two electrons feel when residing on the 
same site. 

Perturbation theory provides useful results only in the limits of either weak or strong coupling, but 
fails in the interesting regime of intermediate coupling. Methods employing resummations of 
Feynman diagrams to infinite order are usually biased due to the particular choice of diagrams. Exact 
methods such as Quantum Monte Carlo (QMC) and exact diagonalization are restricted to relatively 
small system size due to the computational complexity. In principle, one can imagine carrying out an 
analytical calculation which includes all the Feynmann diagrams. This would theoretically yield exact 
results on the single-particle and two-particle levels if one manages to include all relevant 
diagrammatic equations up to that level. 

The parquet formalism is based on a two-particle self-consistent theory, where all the relevant 
physical conservation rules are preserved as well as the crossing symmetries at two-particle level are 
obeyed. It is based on the following four diagrammatic equations. To simplify the formalism, we 
consider systems that preserve the spin SU (2) symmetry. We denote   (k; in) and   (k, in) with 
n = (2n + 1) T and n = 2nT. In the following, r is used as a general label for r = d, m, s, t which 
label the particle-hole density and magnetic channels (d and m), and the particle-particle singlet and 
triplet channels (s and t). All indexes are in modulo arithmetic so that a negative index such as – is 
equal to mod (Nt – , Nt). 

 
– The Dyson equation 

 

– The Schwinger-Dyson equation 

 

– The Bethe Salpeter equation 

 

for r = d, m, s, t, and with 

 

– The Parquet equation 

 



 
 
 
 
 
 

where ̃ߢ =  + , 

 

and for r = d, m, it is labeled as ; while for r = s, t, labeled as . 
The parquet equations are derived from enforcing two-particle crossing symmetries, while the other 

equations are necessary for a conserving approximation. The above set of equations, however, does 
not form a closed loop because the fully irreducible vertices, r, are not determined internally. When 
r is replaced by the bare interaction, one obtains the parquet approximation. One can also imagine 
taking the results of an exact calculation for a small system size, using e.g., exact diagonalization or 
QMC methods, as an input for r in the parquet equations. In this case, one obtains the full multi-scale 
parquet formalism, that has been discussed in [9]. 

2. Algorithm 
The parquet equations (2) to (7) form a system of nonlinear equations. The strength and spatial range 
of correlations depends on the ratio between the Coulomb repulsion U and temperature T and the 
nonlinear system becomes increasingly difficult to solve for large U. Each entity such as Γ௧

௣௣ () ,  
or Fr () 1, 2 can be discretized and represented as three-index Nt × Nt × Nt arrays t (1, 2, ) and 
Fr (1, 2, ). A simple algorithm is to perform fixed-point iteration by freezing some of the unknowns 
to solve a subset of the nonlinear equations. Starting from an initial guess, we can solve the Bethe 
Salpeter equation (4) to generate Fr () 1,2. The r and r values can be updated using the new Fr 
values using (7). The new r () ,  values are computed by the Parquet equations (6). One can 
iteratively solve (4) and (6) until convergence, then update the Dyson equation and self energy in (2) 
and (3). Although this method is efficient and simple to implement, the iterations may become 
unstable for large values of U ≥ 18. 

A careful examination of the system shows that the Bethe Salpeter equations can be written as 

 

so that the Bethe Salpeter equations and the Parquet equations can be written as linear expressions in 
Fr, r, r, and r. The nonlinearity comes mainly from the r and r variables that are products of 
just Fr () and r (); therefore (4) to (7) form a complex system of affine quadratic equations. 

The literature is sparse on methods for solving a general system of quadratic equations. The 
solution of a system of quadratic equations using Newton’s method has been analyzed in [6]. It shows 
that multiple solutions are possible and the Jacobian matrix may be exactly singular if it is evaluated at 
a midpoint of two solutions. Cohen and Tomasi [3] have considered the solution of a special case of a 
system of homogeneous bilinear equations. Their results show the problem is related to solving the 
generalized eigenvalue problem. Bouaricha and Schnabel [7,1,2] have considered an extension of the 
Newton’s method to solve F(x) = 0 by including a low rank tensor approximation of higher derivatives 

 

where Tc is a three index tensor object formed by interpolation of past Newton steps. The tensor Tc is 
not the second derivative of F(x) but is chosen to be a sum of p rank-one tensor objects. Equation (9) 
may be viewed as a particular system of quadratic equations. Ultimately, Newton’s method or 
Levenberg-Marquardt method is used to solve (9) in a least squares sense as a smaller system of p 



 
 
 
 
 
 

quadratic equations. The analysis of quadratic matrix equation AX2 + BX + C = 0 in n × n matrices and 
the connection to quadratic eigenvalue problem (2A + B + C)x = 0 have been considered by Higham 
and Kim [4]. The authors used Newton’s method with exact line searches [5] to solve the quadratic 
matrix equations. 

We have developed a parallel solver using Newton’s method with line search to solve the complex 
system of biaffine quadratic equations. The unknowns are eight Nt × Nt × Nt arrays for Fd, Fm, Fs, Ft, 
d, m, s, and t. The complicated vertex rotations to enforce crossing symmetries in the Parquet 
equations (6) can be viewed as permutation operations on a long vector of length Nt

3. The permutation 
is implemented using the Message Passing Interface (MPI) all-to-all communication primitive. This 
operation places high demands on the communication network and is one of the most time consuming 
kernels. The sparse Jacobian matrix of the bilinear quadratic equations can be analytically computed 
but it has O(40Nt

4) nonzeros. For problems of interest Nt ≥ 256, the sparse Jacobian matrix is very 
costly to store in memory. For example, if Nt = 1024 then there are nearly 8.6 billion degrees of 
freedom and explicit storage of the sparse Jacobian still requires over 351 TBytes of memory and for a 
larger case of Nt = 1280, there are over 16.7 billion degrees of freedom and storage of the Jacobian 
requires over 858 TBytes of memory! For this application, we have found that computing the matrix-
vector operation by finite differences introduces an unacceptably high error due to numerical 
cancellation. Instead the action of matrix-vector multiply is computed analytically without explicit 
formation of the Jacobian. The  and   expressions in (7) are simple products of Fr and r. The 
interaction of derivatives of r or r with respect to Fr or r can be computed as dense complex 
matrix products of Nt by Nt matrices. The entries in the Jacobian matrix consist of terms [derived from 
(7)] such as 

 

The large sparse Jacobian system is solved using the BICGSTAB(L=2) [8] Krylov iterative 
method† without preconditioning. Preconditioning using simple Jacobian diagonal scaling is not 
effective for this problem. 

3. Numerical Experiments 
The parquet code has a robust multilevel parallel implementation and has been ported to several 
parallel machines, including the International Business Machine (IBM) Opteron cluster (Glenn) at the 
Ohio Supercomputer Center (OSC), the Sun Constellation Linux cluster (Ranger) at the Texas 
Advanced Computing Center (TACC), the IBM BlueGene/P (Eugene), and Cray XT4/5 (Jaguarpf) at 
the National Center for Computational Sciences (NCCS) at the Oak Ridge National Laboratory 
(ORNL).  

We present performance for the 4 × 4 Hubbard cluster model (Nc = 16), with parameters, U = 0.3, 
T = 0.05, t = 0.25 for two cases, using Nf = 64 and Nf = 80 Matsubara frequencies for problem sizes 
Nt = 1024 and Nt = 1028 respectively. For the Nt = 1024 case, the number of MPI processes was varies 
from 256 to 1024, with 4 OpenMP threads per MPI process, using a maximum of 4096 cores. The 
Nt = 1280 case was run with 640 and 1280 MPI processes with 4 threads per process using a maximum 
of 5120 cores. The plots in Figure 1 show the code performs well despite the need for a large “all-to-
all” exchange for tensor rotations. 
 

                       
† The code for bicgstab2 is available at http://www.math.uu.nl/people/vorst/zbcg2.f90 



 
 
 
 
 
 

Figure 1. Strong Scaling plots for the Parquet Solver base on Jaguarpf measurements (Left) 
Execution times for two problem sizes, on core counts from 1024 to 5120. (Right) Scaled speedup 
plot for the Parquet code, speedup for each problem size determined relative to measurement of 
lowest core count. 

 

4. Summary 
We have described the development of a parallel solver for multi-scale parquet quantum modeling of 
highly correlated materials. The code uses Newton’s method with line search to solve the large system 
of affine quadratic equations. The large sparse Jacobian is too large to store and the action of matrix-
vector multiply is computed analytically. Performance results on the Cray XT4/5 cluster suggest 
hybrid OpenMP and MPI programming technique can effectively use large numbers of cores to solve 
problems with several billion degrees of freedom. 

Future development will focus on more sophisticated continuation method for generating good 
initial guesses and the exploration of effective preconditioners and iterative methods for solving the 
Jacobian system.  
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