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Abstract. We describe the mathematical representations, data structure and the implementation 
of the numerical calculus of functions in the software environment multiresolution analysis 
environment for scientific simulations, MADNESS. In MADNESS, each smooth function is 
represented using an adaptive pseudo-spectral expansion using the multiwavelet basis to a 
arbitrary but finite precision. This is an extension of the capabilities of most of the existing net, 
mesh and spectral based methods where the discretization is based on a single adaptive mesh, or 
expansions. 

1. Introduction 
One of the appealing features of the MADNESS computational environment which enhances its 
usability is the high level composition which permits codes to be expressed similiar to the mathematical 
equations describing the physics. In order to make this possible, an adaptive representation of functions 
using multiresolution analysis for numerical calculus is developed to preserve the accuracy of the 
computation. In this paper, we focus on the computer science and implementation aspects of 
MADNESS. In particular, the numerical calculus for permitting arithmetic of functions using multiple 
resolutions is described as well as its parallel implementations to achieve user defined, arbitrary but 
finite, precision. We work with smooth functions and assume that they can be represented and sampled 
in an interval in the multiwavelet basis. Previously, the approximation of discontinuous functions was 
described [4]. 

MADNESS is designed to address the following programming and computational issues: 
 raising the level of composition of scientific applications, making it faster and easier to both 

construct robust and correct algorithms and calculate solutions to existing and new problems, 
 computing using functions and operators instead of just numbers, vectors and matrices, 
 providing fast and accurate solutions to a variety of differential and integral equations in one to 

six dimensions (perhaps higher), and 
 facilitating the use of massively parallel computational resources by a wider audience. 

 
Using MADNESS, a code is written in terms of functions and operators, using the C++ language and 

for this reason, it can be thought of as a basis-free method. There are underlying representations and 
approximations using bases and grids that adapt and refine automatically to satisfy the user requested 
precision. However, the user does not have to think about either the adaptivity or refinement until 
efficiency or memory become an issue. 



The numerical operations can be regarded as a finite precision symbolic calculus used to express the 
equations. For example, the code corresponding to 

 
1

2
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in three dimensions is just  

real_function_3d dpsidx=Dx(psi);  
double result = 0.5 * inner(dpsidx, dpsidx) + inner(V(x), psi*psi);  

where psi is a 3-D function, Dx(psi) computes the derivative of psi in the x-direction, and the method 
inner computes the  inner product f, g  f  x g x dx. 

Within MADNESS both differential operators and integral operators can be applied to functions. 
Important and common convolution operators with physically relevant free space Green functions (e.g., 
Coulomb, bound-state Helmholtz, free-particle quantum propagator) are built in. The details of their 
implementation will be described elsewhere. Finally, MADNESS excels at obtaining high-accuracy 
solutions, computing efficiently in many dimensions, and using massively parallel computers. However, 
MADNESS is not appropriate for every application. In particular, if you have complicated boundary 
conditions or geometries, highly oscillatory functions, or only need low precision, then other tools might 
be more useful. 

In the following, we describe approximation of functions using multiwavelets and explain the data 
structure and parallel computing approach which enable its usability. In Section 2, we review 
multiwavelets. In Section 3, we describe the approximation of functions and the computation of some 
elementary composition of functions in MADNESS. In Section 4, parallel implementation and 
programming issues are outlined. 

2. Multiwavelets 
We describe our algorithms in one dimension. Most of the description carries over to many dimensions 
via tensor products and by rescaling the domain. We note that in higher dimensions it is advantageous to 
use the non-standard representations [3] to decouple interactions between scales. We use wavelet and 
multiwavelet interchangeably when it is convenient and clear. 

We adapt the notation of [1,2] and review some results. Fix a positive integer  and the unit interval. 
Let ϕ √2 1 2 1  denote -th scaling function, which is the -th Legendre polynomial 

 shifted to 0,1  and normalized. For 0, ϕ  is just the Haar scaling function. This set of 
functions span the space of “scaling functions” . 

Define functions ϕ 2 / ϕ 2 ,  where 0,1, . ..  and 0, . . . , 2 1 , the 
dyadical scaled and translated of the scaling functions. These functions are orthonormal on 
2 , 2 1  and vanish elsewhere. Denote the span of these functions by . 

The scaling functions were constructed with the following properties:  

 0,1 →   
 Given an initial level 0, ⊂ ⊂ . ..  
 Invariant under translation  
 If ∈ , then 2 ∈   
 For a given scale ,  ϕ ϕ 1.  

 

                                                      
1The  is the Kronecker delta function. 



 

Figure 1. MADNESS has be used to compute 
electronic structure of molecules and nuclear structures 
of elements. The logarithm of the absolute value of the 
real part of the quasi-particle wavefunctions for nuclear 
density functional theory simulations [6]. 

 
The multiwavelet space , is defined to be the orthogonal complement of  in . In Alpert’s 

thesis, there are two choices for the orthonormal multiwavelets,  in ; vanishing moments or 
regularity. We primarily use the multiwavelets with vanishing moments, i.e.,   0, for 
, 0, . . . , 1. In particular, if a function has a Taylor expansion up to order 1, then the 

wavelet coefficients up to order 1 are zero. The space  is spanned by 2  functions obtained 
from , . . . ,  by dilation and translation, 2 / 2 1 . 

A key property is that Alpert’s multiwavelets generate a form of multiresolution analysis [5] and are 
orthogonal. Let 0,1  represent the space of -integrable functions on the unit interval with the 

 metric, ,   . 
Without loss of generality, we drop the  notation, unless necessary. Since ⊂ , the basis 

functions for level 0  can be expressed in terms of the basis of . Thus there exists constants 
, , ,  such that  



ϕ √2   ϕ 2 ϕ 2 1 , 

and  

√2   ϕ 2 ϕ 2 1 . 

The key property of multiresolution analysis (MRA) is the separation of the behavior of functions 
and operators at different length scales. Central to this concept is the telescoping series which exactly 
represents the basis at a finest scale  in terms of basis from level 0 with successive corrections at 
successively finer scales,  

. . . . 

If the function is sufficiently smooth and regular in some region to be represented at the desired 
precision at some level, then the differences at finer scales will be negligibly small. 

Each definition of multiwavelet basis and the scaling function for each level  gives a dyadic 
subdivision of the unit interval which is naturally represented as a dyadic tree. 
 

 

Figure 2. The multiresolution representation of a 
function using multiwavelets is naturally represented 
in a tree structure. A 3-D function is shown which 
corresponds to an octree (Octree picture is from 
WhiteTimberwolf’s contribution at Wikipedia). 

3. Numerical Calculus in MADNESS 
In order to perform function calculus in a user friendly fashion, arithmetic operations of functions and 
functions of functions must also be defined and computed both efficiently and in a fast manner in the 
multiwavelet representation without resorting to multiple transformations and costly quadratures for 
resampling. The orthonormality property of the multiwavelet basis make these computations fast and 
efficient. 

We describe the computation of a few of these representations below. 

3.1. Approximation of Smooth Functions 
Let ∈ 0,1  be a smooth function. Its projection, ∈  can be written as 

∑  ∑   ϕ .  The coefficients  are computed as   ϕ .  The 
function expanded in the multiwavelet basis is given as  



  , ϕ       , 

with the multiwavelet coefficients computed as   . Since the basis are 
piecewise polynomial an adaptive Gauss-Legendre quadrature is used. 

We use the term “compression” to mean multiwavelet compression, analogous to wavelet 
compression of an image. In many examples an image or a signal (denoted by ) can be written as 

 where  is a structured component and  is a noisy component. The structure part  can 
often be represented using very few coefficients (in a compressed form). 

 

 

Figure 3. A two-dimensional slice of the three-dimensional 
adaptive refinement of cubes shows where significant scaling 
and multiwavelet coefficients are required for the 
representation of the singular potential corresponding to the 
nuclei of the Hydrogen molecule. 

3.2. Truncation Criteria 
Discarding small differences coefficients in the multiwavelet expansion while maintaining precision is 
crucial to speed and sparsity, and drives the adaptive refinement. Recall that for smooth functions the 
level of the multiwavelet expansion depends on the user given error criteria and is dependent, 
dyadically, on the averaged value of the basis functions and dies off with respect to level of adaptive 
refinement and the box sizes. 

Different truncation criteria are used in MADNESS in the multiwavelet representation. Let  
denote the tensor of coefficients  for level , leaf node . The norm || ||  denotes the norm 
∑   | |  of . 

Mode 0: The difference coefficients of the leaf nodes are neglected according to  

  | | . 

This truncation is appropriate for most calculations where the functions have deep levels of refinements 
(such as those near singularities, steep gradients or discontinuities). 

Mode 1: Mode 1 is appropriate when an accurate representation of both the function and its 
derivative is required. Difference coefficients of leaf nodes are neglected according to  

|| || 1, ∗ 2  

where  is a constant depending on the simulation domain size before rescaling to the unit interval. 



Mode 2: Mode 2 is appropriate only for smooth functions with nearly uniform level of refinement for 
the entire domain. The multiwavelet difference coefficients are neglected according to  

|| || 2 /  

where  is the dimension of the approximation. In this mode, the error between the representation 
between the levels 1 and  is within , || || . 

3.3. Adaptive Refinement 
After projection has been performed at boxes number 2  and 2 1 at level , the scaling function 
coefficients may be tranformed or filtered to produce multiwavelet coefficients at box  at level 1. 
If the desired truncation is not satisfied, the process is repeated at the child boxes 4 , 4 1,4 2,4
3 at level 1. Otherwise, the computed coefficients are inserted at level . 

3.4. Evaluation 
Once a function has been represented at level  with the desired approximation. The function can be 
evaluated at different points by recurring down the dyadic tree to find the appropriate box which 
contains the point, evaluating the basis functions and summing over its products with the coefficients. 

3.5. Products 
We briefly describe the procedure for multiplication of multiwavelet functions represented in an interval 
[2]. Consider two functions  and  approximated in the multiwavelet basis, each represented on the 
interval by -term interpolating scaling polynomial expansions. The interpolating scaling functions 
ϕ  constructed from the Legendre interpolating polynomial at the quadrature points is related to the 
scaling functions ϕ  by  

ϕ  ϕ ϕ  

where , . . .  denote the roots of the Legendre polynomail 2 1  and its associated 
quadrature weights , . . . . There is a fast transform to and from the multiwavelet scaling 
functions and the interpolating scaling functions. 

 

 

Figure 4. The adaptive structure of two functions 1  and 1

 and their product  is shown. The vertical axis indicates the level  of the 
multiwavelet expansion that is used in the adaptive discontinuous expansion. 



We obtain the product ⋅  as follows. Let ∑  ∑   ϕ  and 

∑  ∑   ϕ , with possibly two different . Then: 

 Refine the functions  and  so that the representations of the two functions are at the same 
level.  

 Now refine the representation of  and  by dividing the subinterval on the finest level into two, 
to allow sufficient resolution to represent the product.  

 The coefficients of the product of representations ∑   ϕ  on a 

subinterval at level  is 2 /  , where  are the Gaussian quadrature weights.  

 The threshholding is applied. The coefficients for the two finest levels  and 1  are 
compared. If the coefficiencts at level 1  are below the truncation threshold, those 
coefficients are deleted.  

 
The case of squaring a function is special and can be performed faster since it is an in-place 

operation. In some scenarios, it can be used to multiply two functions. This follows from Beylkin’s 

observation that ⋅ . 

In MADNESS, a slight different approach is used. Let us describe the point-wise multiplication since 
this is fundamental. The products of two functions is performed in the scaling function basis. Intuitively, 
each function is transformed to values at the quadrature points, multiply the values and then transformed 
back. In practice and in robust implementation there are three complicating issues. 

First, the product cannot be exactly represented in the polynomial basis. The product of two 
polynomials of order 1 produces a polynomial of order 2 2. Beylkin makes a nice analogy to 
the product of two functions sampled on a grid ‒ the product can be exactly formed on a grid with double 
the resolution. This is not exact for polynomails but the expected error is reduced by a factor 2  where 

 is the number of multiwavelets. 
In MADNESS, an option to automatically refine and form the product at a lower level is given. This 

is performed by estimating the norm of each of the leaf boxes which is a products of the Frobenius norm 
of the two functions. 

Second, the functions may have different levels of adaptive refinement. The two options are to 
compute the function with coefficients at a coarser-scale directly on the grid required for the finer-scale 
function, or to refine the function down to same level, which is what we previously choose to do. 
However, this leaves the tree with scaling function coefficients at multiple levels that must be cleaned up 
after the operation. Since it essential (for efficient parallel computation) to perform multiple operations 
at a time on a function, having it in an inconsistent state makes things complicated. If all we wanted to do 
were perform other multiplication operations, there would be no problem; however this seems to be an 
unnecessary restriction on the user. It is also faster to perform the direct evaluation and this is what has 
been implemented. 

Third, the above does not use sparsity or smoothness in the functions and does not compute the result 
to a finite precision. For instance, if two functions do not overlap their product is zero but the above 
algorithm will compute at the finest level of the two functions doing a lot of work to evaluate small 
numbers that will be discarded upon truncation. Eliminating this overhead is crucial for reduced scaling 
in electronic structure calculations. At some scale we can write each function in the domain in terms of 
its usual scaling function approximation at that level  and the correction/differences  from all finer 
scales. The error in the product of two such functions is then the sum of the products of the 
approximation of the scaling function coefficients and multiwavelet difference coefficients for  and . 

Note again that while the scaling function coefficients are as used everywhere else in this document, 
the difference multiwavelet part of the expansion is the sum of corrections at all finer scales. Thus, by 
computing the scaling function coefficients at all levels of the tree and summing the norm of the 
differences up the tree we can compute with controlled precision at coarser levels of the tree. The sum of 



the norm of differences can also be computed by summing the norm of the scaling function coefficients 
from the finest level and subtracting the local value. 

3.6. Quotients and Rational Functions 
Similiar to products we describe the procedure for representating rational functions / . In this 
case we have to find the coefficients of  such that . From the procedures for 

products, at level , 2 / . Thus, 2 / /  with 0. 

3.7. Square Root 
The square root of a function can also be described. Using the products of two functions we have the 

coefficients for  being represented on level  as 2 / . The coefficients of 

the function  can be represented as 2 / . 

Computation of cubic and higher roots of functions can be performed in an analogous way. 

4. Data Structure and Computational Methodologies 
Multiwavelet representations are best understood in terms of 2 -tree for  dimensions correspond to 
the dyadic scaling of the basis functions in the tensor product representation. Each level of the tree 
corresponds to a level of the refinement using the 2-scale relation in each dimension. The difficulties of 
the tree architecture is the serial manner in which efficient tree traversal algorithms are implemented, as 
the order of summation that must be performed must vary to minimize round-off or numerical 
summation errors. In MADNESS, the tree is mapped to a hash table. In this section we assume the reader 
has some knowledge of C++ data structure and templates as well as parallel computing. 

A -dimension function is represented as a 2 -tree. Nodes in the tree are labeled by a tuple key 
,  where  is the level and  is a d-vector representing the translation. Nodes are represented by 

instances of FunctionNode<T,d>, where T is a templated data type, that presently contains the 
coefficients and an indicator if this node has children. Nodes, indexed by keys, are stored in a distributed 
hash table that is an instance of a MADNESS container class. This container uses a two-level hash to 
first map a key to the processes (referred to as the owner) in which the data resides, and then into a local 
instance of either a GNU hash_map or a TR1 unordered_map. Since it is always possible to compute the 
key of a parent, child, or neighbor we never actually store (global) pointers to parents or children. 
Indeed, a major aim of the MADNESS runtime environment is to replace the cumbersome partitioned 
global address space (global pointer is process id + local pointer) with multiple global name spaces. 
Each new container provides a new name space. Using names rather than pointers permits the 
application to be written using domain-specific concepts rather than a rigid linear model of memory. 

Data common to all instances of a function of a given dimension ( ) and data type ( , e.g., float, 
double, float_complex, double_complex) are gathered together into FunctionCommonData<T,d> of 
which one instance is generated per wavelet order ( ). An instance of the common data is shared 
read-only between all instances of functions of that data type, dimension and wavelet order. In addition 
to reducing the memory usage of the code, sharing the common data greatly speeds the instantiation of 
new functions which is replicated on every processor. In order to facilitate shallow copy and assignment 
semantics and to make empty functions inexpensive to instantiate, a multi-resolution function, which is 
an instance of Function<T,d> contains only a shared pointer to the actual implementation which is an 
instance of FunctionImpl<T,d>. Uninitialized functions (obtained from the default constructor) contain 
a zero pointer. Only a non-default constructor or assignment actually instantiate the implementation. 
The main function class forwards nearly all methods to the underlying implementation. The 
implementation primarily contains a reference to the common data, the distributed container storing the 
tree, little bits of other state (e.g., a flag indicating the compression status) and several methods. 



Default values for all functions of a given dimension are stored in an instance of 
FunctionDefaults<d>. These may be modified to change the default values for subsequently created 
functions. Functions have many options and parameters and thus we have made it easy to specify 
options and selectively override defaults. Since C++ does not provide named arguments (i.e., arguments 
with defaults that may be specified in any order rather than relying on position to identify an argument) 
we adopt the named-parameter idiom. The main constructor for Function<T,d> takes an instance of 
FunctionFactory<T,d> as its sole argument. The methods of FunctionFactory<T,d> enable setting of 
options and parameters and each returns a reference to the object to permit chaining of methods. 

Most memory is reference counted using Boost-like shared pointers. An instance of 
SharedPointer<T>, which wraps a pointer of type T*, is used to wrap memory obtained from the C++ 
new operator. The exceptions are where management of the memory is immediately given to a low-level 
interface. Shared-pointers may be safely copied and used with no fear of using a stale pointer. When the 
last copy of a shared pointer is destroyed the underlying pointer is freed. With this mode of memory 
management there is never any need to use the C++ delete operator and most classes do not even need a 
destructor. 

4.1. Maintaining a consistent state of the 2d-tree 
The function implementation provides a method verify_tree() that checks connectivity and consistency 
of the compression state, presence of coefficients, child flags, etc, as described below. 

A node in the tree is labeled by the tuple ,  key and presently stores the coefficients and a flag 
indicating if the node has children. In 1D, the keys of children are readily computed as 1,2  and 

1,2 1 . In many dimensions it is most convenient to use the KeyChildIterator class. In the 
reconstructed form (i.e. the scaling function basis rather than the multiwavelet basis), a tree has 
coefficients (held in  tensors) only at the lowest level. All interior nodes will have no coefficients 
and will have children. All leaf nodes will have coefficients and will not have children. 

In the compressed form (wavelet basis), a tree has coefficients (in 2  tensors) at all levels. The 
scaling function block of the coefficients is zero except at the coarsest level. Logically, this tree is one 
level shallower than the reconstructed tree since the scaling function coefficients at the leaves are 
represented by the difference coefficients on the next coarsest level. However, to simplify the logic in 
compress and reconstruct and to maintain consistency with the non-standard compressed form (see 
below), we do not delete the leaf nodes from the reconstructed tree. Thus, the compressed tree has the 
same set of nodes as the reconstructed tree with all interior nodes having coefficients and children, and 
all leaf nodes having no coefficients and no children. 

In the non-standard compressed form (redundant basis), we keep the scaling function coefficients at 
all levels and the wavelet coefficients for all interior nodes. Thus, the nonstandard compressed tree has 
the same set of nodes as for the other two forms but with all nodes having coefficients (a 2  tensor 
for interior nodes and a  tensor for leaf nodes). 

To keep complexity to a minimum we don’t want to introduce special states of the tree or of nodes, 
thus all operations restore the tree to a standard state by their completion. 

Truncation is applied to a tree in compressed form and discards small coefficients that are logically 
leaf nodes. Logically, because in the stored tree we still have the empty nodes that used to hold the 
scaling coefficients. For a node to be eligible for truncation it must have only empty children. Thus, 
truncation proceeds as follows. We initially recur down the tree and for each node spawn a task that 
takes as arguments futures indicating if each of its children have coefficients. Leaf nodes, by definition, 
have no children and no coefficients and immediately return their status. Once a task has all information 
about the children it can execute. If any children have coefficients a node cannot truncate and can 
immediately return its status. Otherwise, it must test the size of its own coefficients. If it decides to 
truncate, it must clear its own coefficients, delete all of its children, and set its has_children flag to false. 
Finally, it can return its own status. 

Adding (subtracting) two functions is performed in the wavelet basis. If the trees have the same 
support (level of refinement) we only have to add the coefficients. If the trees differ, then in addition to 



adding the coefficients we must also maintain the has_children flag of the new tree to produce the union 
of the two input trees. To permit functions with different processor maps to be added efficiently, we loop 
over local data in one function and send them to nodes of the other for addition. Sending a message to a 
non-existent node causes it to be created. 
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