

Parallel mesh control tools for unstructured meshes

Min Zhou,1 Aleksandr Ovcharenko,1 Ting Xie,1 Seegyoung Seol,1 Kenneth E.
Jansen,2 Onkar Sahni,1 and Mark S. Shephard1*
1Rensselaer Polytechnic Inst, Sci Computat Ctr, Troy, NY12180
2University of Colorado at Boulder, Boulder, CO80309

E-mail: *shephard@scorec.rpi.edu

Abstract. The ITAPS center is developing services for unstructured mesh operations that
operate on massively parallel computers including base services to effectively support evolving
mesh partitions that take advantage of local and/or neighborhood information to eliminate
syncronization steps and reduce communications. This paper overviews base services for
controlling mesh partitions and controlling messages that are communicated within processor
neighborhoods.

1. Introduction
Unstructured adaptive mesh methods support the effective and reliable analysis of complex physical
behaviors modeled by partial differential equations over general three-dimensional domains. Although
well defined adaptive meshes can have two to three orders of magnitude fewer elements than a more
uniform mesh for the same level of accuracy, there are many complex simulations where the meshes
required are so large that they can only be solved on massively parallel computers. The execution of a
simulation on a massively parallel computer requires the mesh be distributed over the computing
nodes and cores of the parallel computer through a partitioning of the mesh in which the amount of
computation required for each part is nearly equal and the amount of inter-processor communication
between parts is as small as possible. Given the fact that the meshes needed will not fit within the
memory of even a single node, the methods developed to manage the mesh in parallel must address: (i)
Understanding how the mesh entities and their adjacencies relate to computation and/or memory use.
(ii) Performing multiple dynamic load balancing steps to account for the changing load balance caused
by operations as adaptive mesh modification. (iii) Constructing and managing the mesh partition must
be performed using effective scalable methods to avoid that step becoming more dominant as we
move toward exascale machines.

A key conclusion the above factors point to is that parallel adaptive simulation on massively
parallel computers requires all steps be efficiently executed in parallel on a partitioned mesh and that
the mesh be effectively repartitioned as needed at various steps in the simulation.

Although a reasonable set of procedures and methods had been developed for parallel mesh
adaptation when a few hundred processors were used [1,2], recent efforts to move to massively
parallel computers with 100,000’s of compute cores [3,4,5] indicated the need to develop a number of
additional capabilities [6]. This paper focuses on two of these capabilities. The first capability is an
extension of the partition model to support multiple parts per processor. Although we have run into
multiple scenarios where this capability is useful, the overriding one in massively parallel adaptive
simulations is when the total size of the mesh grows by one or two orders of magnitude during a

simulation, yielding a situation where it is desirable to increase the number of cores being used in
subsequent steps. The second capability is a predictive load balancing procedure that is used to drive a
repartitioning of the mesh before a mesh adaptation step with the goal of having nearly a balanced
mesh partition after the mesh is adapted. Although this capability is potentially useful in maintaining
computational load balance during mesh adaptation, its primary goal is to control the amount of
memory used by each part so that memory usage is nearly equal with no parts requiring substantially
more than the average memory usage. On some of the most effective massively parallel computers,
exceeding the memory on a single core will lead to failure or termination of the calculation.

2. Partition Control on Massively Parallel Computers
Graph/hypergraph-based algorithms are most effective for partitioning unstructured meshes [7,8,9]. In
our work on parallel computations at extreme scale, specific issues were observed [6]. One issue
relates to the cost and reliability of applying parallel dynamic load balance over all cores using a graph
of the entire distributed mesh, which is referred to as global partitioning. As core counts increase, the
quality of global partitions can degrade. In addition there is a reliability issue that arises in some
current graph/hypergraph-based partitioner implementations that, in our experience, often fail for
partitions requiring large number of parts (100K). The second issue is related to the characteristics of
implicit parallel mesh-based analysis which has the two primary work components of equation
formation and equation solution which require load balance of different types of mesh entities
(elements and vertices in the present case). Graph/hypergraph-based partitioning uses one type of
mesh entities as graph nodes, thus, the balance of other mesh entities may not be optimal. Partition
improvement methods have been developed to account for a balance of multiple entity types within a
single partition. Those issues are addressed in our work by the combined strategy of global and local
graph partitioning plus iterative improvement using the algorithm developed in [6].

Two partitioning categories are defined based on data provided to graph/hypergraph-based
partitioner: global partitioning which considers both intra-processor and inter-processor graph edges,
and local partitioning which considers only intra-processor graph edges. Global partitioning considers
the complete set of graph edges and provides a balanced partition with well controlled inter-part
communication. Local partitioning considers only the on-processor (intra-processor) graph edges and
nodes, without knowing the existence of graph nodes and edges on other processors. In this case,
partitioning is carried out independently on each processor, as a serial process, which can be executed
in an embarrassingly parallel fashion on all processors. At large core counts local partitioning requires
much smaller compute time where a global partitioning implementation may fail. However, as local
partitioning is repeated, the quality of the partition will decrease due to the compounding of imbalance
in each step. Local partitioning is not optimal, but provides good starting partitions that can easily be
improved by iterative algorithms.

When very large core counts are considered, the problems observed in the partition obtained from
the graph/hypergraph-based procedures are limited to a number of heavily loaded parts (based on
mesh vertices), referred to as spikes. Thus, scalability of the equation solution phase is limited by
these spikes. The diffusive approach, Local Iterative Inter-Part Boundary Modification (LIIPBMod)
developed in [6], reduces spikes by migrating selected mesh entities from relatively heavily loaded
parts to less loaded neighboring parts. On heavily loaded parts, the mesh vertices on the inter-part
boundary are traversed and the ones bounding a small number of elements are identified. Then the
elements adjacent to selected vertices are migrated to the lightly loaded neighboring part. Figure 1
explains the algorithm using three, 2D examples for clarity. The procedure has been implemented for
3D meshes. By this local inter-part boundary adjustment, the vertex imbalance is improved while only
modestly perturbing the element balance. The procedure is repeated for several iterations to achieve
the desired improvement to the vertex balance. In the extreme scale simulations, the global and local
partitioning are used in a combined manner. i.e., in the first step, the mesh is balanced globally into an
intermediate number of parts, m, and in the second step, each of these m parts split independently to

Figure 1. Partition before and after LIIPBMod.

n parts, which gives m × n parts in total. In the final step, the balance of the partition is improved by an
iterative mesh entity migration procedure. This combination is much faster and more efficient
compared to global partitioning.

An abdominal aorta aneurysm (AAA) model
(see Figure 2) is used to study the partition
improvement algorithm by using it in conjunction
with graph/hypergraph-based procedures, namely
ParMETIS PartKWay [9] and Zoltan Parallel
HyperGraph partitioner PHG [7].

First consider a 1.07 billion anisotropic,
tetrahedral element mesh created by applying
mesh adaptation [10] on an AAA model. The
global (ParMETIS PartKWay) and local (PHG)
partitioning are combined to obtain different
partitions with number of parts ranging from
4,096 to 294,912 [11]. The element imbalance is
within 6% for all the partitions with up to 294,912
parts. However, the vertex imbalance is getting
worse when the mesh is distributed to more and
more parts. Each part of a globally balanced (1.025% element imbalance) partition with 4,096 parts
splitting to 72 parts gives a partition with 294,912 parts in total. The element imbalance is 5.6%, but
the vertex imbalance is 43.7%, which indicates 43.7% more work to do on the part with the highest
number of vertices during the equation solution phase of the FEA. The LIIPBMod algorithm reduces
the vertex imbalance dramatically to 17% while increasing the element imbalance to 15%. Table 1

Table 1. Strong scaling results of FEA on an AAA model with 1.07B elements up to
294,912 cores on JUGENE with and without LIIPBMod algorithm. LMod denotes
LIIPBMod

1.07B element mesh
num. of cores

Eqn. form. Eqn. soln. Total

Time s_factor Time s_factor Time s_factor
4,096 (base) 390.17 1 455.51 1 845.68 1
294, 912 5.54 0.98 10.38 0.61 15.92 0.74
294, 912 (LMod) 5.82 0.93 9.14 0.69 14.96 0.79

presents the time usage of the FEA along with the scaling factors. It also compares the cases with and
without using LIIPBMod algorithm. The equation solution phase is accelerated by 12% (from 10.38 to
9.14 seconds) due to better vertex balance, while the equation formation is slowed down a little from
5.54 to 5.82 seconds. The total time usage of the FEA is reduced from 15.92 to 14.96 seconds and the
scaling factor is increased from 0.74 to 0.79. The time spent on the FEA is reduced by 0.96 second per
20 time steps, which means 78.6 cpu hours. In the real application, we usually run thousands of time
steps per cardiac cycle, e.g., 5000. By using LIIPBMod algorithm, we save 78.6 × 5000 = 393

Figure 2. Geometry and mesh of an AAA
model.

thousand cpu hours per cardiac cycle in analysis. The time spent on LIIPBMod algorithm is much
smaller than the classical graph/hypergraph-based partitioner, which is negligible compared to solver
[6]. An 8.56 billion element mesh was also run and yielded similar results.

3. Neighborhood Aware Message Packing
The Inter-Processor Communication Manager (IPComMan) is a package to reduce data exchange
costs by exploiting communications of a local neighborhood for each processor. The neighborhood is
the subset of processors exchanging messages with each other during a communication round, which
in a number of applications is bounded by a constant, typically under 40, independent of the total
number of processors. The library takes care of the message flow with a subset of MPI functions. The
library provides several useful features (i) automatic message packing, (ii) management of sends and
receives with non-blocking MPI functions, (iii) asynchronous behavior unless the other is specified,
and (iv) support of dynamically changing neighborhood during communication steps. IPComMan
takes care of memory allocation for both sending and receiving buffers, and manages the ones that can
be reused without additional allocation. The library stores messages going to the same processor in
contiguous memory. Thus, when sending or receiving a package, no additional memory copying is
needed. The user may specify whether the size of each message is constant or arbitrary during a
specific communication step. The fixed message size is taken by the library and used while extracting
the messages. The arbitrary message size is put together with every message to correctly unpack the
message upon arrival.

While initializing a communication library object, each processor specifies the neighbors it is going
to communicate with. From that point, the library is concentrated on delivering messages between
neighbors only, not touching other processors of the domain, when required. There are no collective
calls during each communication round that remains within a neighborhood. There could be situations
when it is not possible to a priori define all the neighbors for processors, i.e., new neighbors may be
encountered during a communication step. For example, mesh modification operations may alter the
neighborhood of specific processors. Consider the communication pattern presented in Figure 3.
Processor P0 has in its neighborhood processors P1 and P2. P3 has P2 as the only neighbor, but after it
has sent all the messages to P2 it finds out that there are some messages to be sent to P0. P3 includes
P0 in its list of neighbours and begins to send packages to it. An increment of time before, say P0
finished sending to and receiving all the messages from P1 and P2, extracted them and proceeded to
the next communication step. In that case packages from P3 to P0 would be lost, which will result in
incorrect program behavior. To avoid this problem as new neighbors needing to communicate are
encountered, one collective call at the end of communication round is performed to verify whether the
global number of sends and receives match. When new neighbors are formed, the library continues to
receive the messages identifying the new neighbors and communications. Note that at that time all the
packages from existent neighbors are already received.

Figure 3. Communication paradigm with the neighborhood being changed.

Dynamic and irregular computation often results in an unpredictable number of messages

communicated among the processors. Using IPComMan, there is no need to verify and send the

number of packages to be received at the end of sending phase. The last message sent from the
processor to a neighbor contains the number of buffers expected to be received by the neighbor.

To measure the performance of mesh migration, an essential part of parallel adaptive unstructured
mesh procedures [12], IPComMan was compared with the Autopack communication utility. Initial
results on IBM Blue Gene/L [3] show that IPComMans ability to localize communication to
neighborhoods to be independent of the total number of processors and its use of non-blocking
functions allows it to continuously reduce the communication time as the number of processors
increases. Even though the differences in communication times between Autopack [13] and
IPComMan are not substantial at 128 processors, IPComMan is from 3 to 7 times faster in the 4096
processor case.

Although the total communication time for IPComMan is reduced, the scaling for the process does
fall with increased processor count. It is important to note though that the mesh adaptation process that
involves mesh migration procedures is not well balanced in terms of the communication load per part.
However, additional efforts on the scalability are desired. This includes several aspects of managing
sends and receives during the communication phase while interacting with the computation part, and
keeping efficient use of the buffer memory. The options are being considered to eliminate all the
collective calls with the neighborhood concept in IPComMan, although additional analysis is required
to see if these approaches lead to the reduction of the communication time in oppose of using
collective call with the processor count growth.

4. Closing Remark
As the number of cores used in our parallel adaptive simulations continue to increase it is becoming
increasingly important to ensure that the tools used to adapt the mesh and load balance it for the next
set of solution steps are efficient and scale, while at the same time produce a partitioning of the mesh
that ensures the solver will scale well (preferably strong scaling). This paper has outlined two services
that have been recently to help meet these needs.

References
[1] Flaherty J, Loy R, Özturan C, Shephard M, Szymanski B, Teresco J, and Ziantz L. 1996. Applied

Numerical Mathematics, 26 241–263.
[2] Shephard M, Flaherty J, Bottasso C, de Cougny H, Ozturan C, and Simone M. 1997. Parallel

Computing, 23 1327–1347.
[3] Sahni O, Zhou M, Shephard M, and Jansen K. 2009. Proceedings of the SC09 (Springer, Berlin).
[4] Shephard M, Jansen K, Sahni O, and Diachin L. 2007. Journal of Physics: Conference Series

78-012053 012053.
[5] Zhou M, Sahni O, Kim H, Figueroa C, Taylor C, Shephard M, and Jansen K. 2010.

Computational Mechanics, 46(1) 71–82.
[6] Zhou M, Sahni O, Shephard M, Devine K, and Jansen K. 2010. SIAM J. Sci. Comp., 2010,

(under review).
[7] Boman E, Devine K, Fisk L, Heaphy R, Hendrickson B, Leung V, Vaughan C, Catalyurek U,

Bozdag D, and Mitchell W. 1999. Zoltan home page http://www.cs.sandia.gov/Zoltan.
[8] Hendrickson B and Leland R. 1995. Proc. Supercomputing ’95 (ACM).
[9] Karypis G and Kumar V. 1996. 10th Intl. Parallel Processing Symposium, 314–319.
[10] Sahni O, Müller Y, Jansen K, Shephard M, and Taylor C. 2006. Comp. Meth. Appl. Mech.

Engng., 195 5634–5655.
[11] Zhou M, Sahni O, Xie T, Shephard M, and Jansen K. 2010. Journal of Supercomputing, Under

review.
[12] Li X, Shaphard M, and Beall M. 2005. Comp. Meth. Appl. Mech. Engng., 194 4915–4950.
[13] Loy R Autopack user manual science Division Argonne National Laboratory,

http://wwwunix.mcs.anl.gov/autopack/.

