
Three-dimensional full core power calculations for pressurized
water reactors

T.M. Evans,1 G.G. Davidson,1 and R.N. Slaybaugh2
1Radiation Transport Group, P.O. Box 2008, Oak Ridge National Laboratory,
Oak Ridge, TN 37831

2Engineering Physics Department, University of Wisconsin-Madison, 147 Engineering
Research Bldg., 1500 Engineering Drive, Madison, WI 53706

Email: evanstm@ornl.gov

Abstract. We have implemented a new multilevel parallel decomposition in the Denovo discrete
ordinates radiation transport code. In concert with Krylov subspace iterative solvers, the
multilevel decomposition allows concurrency over energy in addition to space-angle. The
original space-angle partitioning in Denovo placed an effective limit on the scalability of the
transport solver that was highly dependent on the problem size. The added phase-space
concurrency combined with the high-performance Krylov solvers has enabled weak scaling to ܱ(100ܭ) cores on the Jaguar XT5 supercomputer. Furthermore, the multilevel decomposition
provides sufficient concurrency to scale to exascale computing and beyond.

1. Introduction
Predictive nuclear energy simulations will involve the coupled modeling of many physical regimes,
including Boltzmann transport, and will require tremendous computational resources. Experience in the
Department of Energy (DOE) Advanced Simulation and Computing program, astrophysics, and nuclear
energy have demonstrated that, in coupled-physics calculations, a 3-D Boltzmann transport solver will
generally require the vast majority of computational resources, in terms of both memory and operations,
because of the seven-dimensional phase-space (location, velocity [energy + angle], and time). For a
nuclear reactor simulation, the scale of the problem is large: 5 orders of magnitude in space and 10 in
neutron energy. A transport solver that incorporates a resolved discretization for all scales using current
discrete models would require 1017–21 degrees of freedom (DOF) for a single timestep, which is beyond
even exascale computational resources. This problem size precludes, for the time being, a single
integrated ab initio computational approach. Instead, variations of current multilevel techniques will
continue, with the new objective being to make the process more consistent and, subsequentially, more
predictive.

Present reactor transport methods use an inconsistent three-level homogenization approach, often
utilizing distinct simulation codes, in modeling radiation transport in the core of a nuclear reactor.
Figure 1 shows the spatial and energy domains, respectively, of this multiscale challenge: ߙ, use of a
fine mesh in 1-D cylindrical geometry of an approximate small subset (pincell) of the reactor core with a
first-principles representation of the energy spectrum; ߚ, use of a coarser mesh with a 2-D transport
solution in a larger subset (lattice) of the core with grouped representation of the energy spectrum
provided by the previous step; and ߛ, use of a very coarse mesh in a 3-D diffusive transport of neutrons
in the full homogenized core of the reactor with a very coarse representation of the energy spectrum

Figure 1. Three levels of reactor geometries and energy structures.

provided by the previous step. The first two steps (ߙ, require 10଻ି଼ DOF with 10ଶିଷ independent (ߚ
calculations, each on single-processor machines. Recent work at Oak Ridge National Laboratory
(ORNL) has demonstrated that, with moderate computational resources, this can be reduced to an
inconsistent two-step approach, where step (A) utilizes the energy fidelity of ߙ with the spatial domain
of ߚ and step (B) uses the energy fidelity of ߚ and the spatial domain of [1,2] ߛ. In this approach, each
step would require 10ଵଵିଵଷ DOF per step with 10ଶ independent high-order (A) calculations for every
timestep.

The solution of the first-order form of the Boltzmann transport equation requires multiple wavefront
solutions over each discrete angle. The wavefront solver imposes a fundamental limitation on the

scalability of the algorithm because of the upstream dependencies of downstream regions. Various
approaches to this problem over the last decade have yielded mixed results. The Koch-Baker-Alcouffe
(KBA) [3] algorithm for structured 3-D grids is very efficient in that the transport operator can be
inverted in a single solve. However, the scalability is limited by communication latency such that this
algorithm is limited by problem size and generally will not scale to ܱ(100ܭ) cores.
Parallel-Block-Jacobi methods have been applied to both structured and unstructured grids yielding
excellent weak-scaling results [4]. But, these methods are less efficient in terms of memory and iteration
count when compared with direct wavefront algorithms. Graph-based direct methods have been
investigated on unstructured grids, but these algorithms have significant scaling limitations [5].

To reduce today's three-level approach to consistent single- or two-level schemes, the
orders-of-magnitude increase in fidelity of each of the steps will require substantially more
computational resources than present algorithms utilize. Therefore, novel approaches to parallelize the
transport equation must be developed that can overcome the wavefront limitation and take full
advantage of the complete computational resources.

A parallel decomposition over energy groups and an Arnoldi-based ݇-eigenvalue solver have been
developed for the Denovo code. Denovo is a 3-D discrete ordinates (ܵே) multigroup radiation transport
code for radiation shielding and reactor physics applications under active development at ORNL [6.7].
The new energy decomposition is in addition to the KBA-based spatial domain decomposition already
present in Denovo. This multilevel decomposition allows parallel scaling up to hundreds of thousands of
cores. Additionally, the new Arnoldi solver can solve ݇-eigenvalue problems with many fewer mesh
sweeps than the traditional power iteration method.

In this paper we will describe Denovo's multilevel parallel decomposition and the solver
technologies that complement it. Solvers for the multigroup ܵே equation are described in § 2. In § 3
we show the limitations of KBA space-angle parallelism on leadership class platforms. Finally, we
describe a multilevel parallel decomposition that overcomes these shortcomings in § 4, and in § 5 we
summarize the complete set of solver options available in Denovo. Results that show the efficiency of
these methods are shown in § 6.

2. Multigroup Solvers
To see how a multilevel energy decomposition can be beneficial and how it will be implemented, we
briefly review the fundamental solver strategies in Denovo; Ref. [6] can be consulted for full details.
The multigroup ܵே equations can be written in operator form as

߰ۺ = ϕ܁ۻ + ௘ , (ϐixed source) (1)ݍ

߰ۺ = ϕ܁ۻ + ଵ௞ ϕ . (eigenvalue) (2)்݂߯ۻ

The state of these equations is defined in angular flux moments, ߶, that are related to the discrete
angular flux through

 ϕ = ۲߰ , (3)

where ۲ is the discrete-to-moment operator that integrates discrete angles into angular flux moments
using quadrature rules. ۺ is the first-order linear differential transport operator, ۻ is the
moment-to-discrete operator that projects angular flux moments into discrete angle space, and ܁ is the
group-to-group scattering matrix. In the eigenvalue form of the equation, fT is the row vector of fission
cross sections, ߯ is the fission spectrum vector, and ݇ is the largest eigenvalue.

Operating by DL–1, defining T = DL–1, and rearranging terms, the fixed-source problem is

 (۷ − ߶(܁ۻ܂ = (4) , ݍ

where q = ݍࢀ௘. Similarly, the eigenvalue problem becomes

 (۷ − ߶(܁ۻ܂ = ଵ௞ (5) , ߶۴ۻ܂

where ۴ = ்݂߯ is the full-rank fission matrix. The operator L–1 can be formed into a lower-triangular
system if one sweeps the space-angle grid in the direction of neutron travel. The resulting transport
sweep is the operation that is parallelized using the KBA algorithm. This matrix is never formed in
practice; only the action of the operator on a vector, y = L–1v, is required.

The traditional method for solving Eq. (4) is Gauss-Seidel iteration,

 (۷ − ܯܶ ௚ܵ௚)ϕ௚௞ାଵ = ௚ݍ + ∑)ܯܶ ௚ିଵ௚ᇱୀ଴ ௚ܵ௚ᇱϕ௚ᇱ௞ାଵ + ∑ ௚ீᇱୀ௚ାଵ ௚ܵ௚ᇱϕ௚ᇱ௞) , (6)

which is the same as solving ܩ one-group space-angle problems per Gauss-Seidel iteration. We refer to
these one-group problems as within-group equations, and they have the following form:

 (۷ − ܯܶ ௚ܵ௚)ϕ௚ = ത௚ , (7)ݍ

where ݍത௚ is an effective group source that includes all in-scattering, fission, and/or external sources for
the group. When using Gauss-Seidel iteration over energy, the within-group solves represent a set of
inner iterations. Denovo provides several solvers (Krylov, source iteration) for the within-group
equations, and Diffusion Synthetic Acceleration (DSA) is available as a preconditioner for the Krylov
options. Obviously, when ܁ is lower triangular (indicating downscattering only) the solution converges
in one Gauss-Seidel iteration. However, when ܁ is energy dense, the solution can converge very slowly.
This structure occurs in the low-energy region of the spectrum where neutrons undergo Maxwellian
upscattering. A typical ܁ for a 27-group set of common reactor materials is illustrated in Figure 2.

Figure 2. Sparsity plot of the scattering matrix
for a problem containing iron, graphite, and
heavy water. The data has 27 energy groups, and
the matrix is lower-triangular through group 14.
The full matrix is dimensioned over energy-
space-angle with angle represented by Legendre
moment expansion.

The standard way to solve Eq. (5) is power iteration. We start by defining an energy-independent

eigenvalue,

 Γ = ்݂ϕ . (8)

Then, Eq. (5) can be written

Γܣ = ݇Γ , (9)

with

ܣ = ܫ)்݂ − (10) . ߯ܯଵܶି(ܵܯܶ

Solving by power iteration proceeds as follows

 Γ௞ାଵ = ଵ௞ Γ௞ . (11)ܣ

The operation ܣΓ௞ necessarily involves solving multigroup problems with the same form as Eq. (4),

ܫ) − ௞ݕ(ܵܯܶ = Γ௞ . (12)߯ܯܶ

Both Gauss-Seidel iteration for fixed-source problems and power iteration (with Gauss-Seidel
inners) are provided in the current version of Denovo. While the implementation in Denovo is enhanced
by applying Transport Two-Grid (TTG) acceleration to the Gauss-Seidel iterations [6] and using
GMRES(݉) on the inner one-group solves, a fundamental limitation of these solvers is that they are
parallelizable only over space-angle variables. The recursive nature of Gauss-Seidel prevents effective
parallelization over energy. One could use parallel block-Jacobi iteration, but this option results in
solvers that are too inefficient to be of practical use on most problems.

Instead, the Krylov solver framework in Denovo that is currently used in the inner one-group
space-angle solves has been expanded to include energy. Including energy in the Krylov vectors enables
the following benefits:

• The energy variable is decoupled allowing groups to be solved independently.
• Krylov subspace iteration is more efficient and robust than Gauss-Seidel iteration.
• Preconditioning a Krylov iteration is generally more robust and stable than Gauss-Seidel

acceleration.
Furthermore, including energy in the Krylov vector does not invalidate any of the existing sweep
mechanics that are already implemented in Denovo.

For multigroup fixed-source problems in the form of Eq. (4), application of a Krylov method
requires the following two steps:
(i) A full energy-space-angle sweep of the right-hand side source,

ݍ = ො , (13)ݍܶ

 where ݍො is an effective source that could be an external source (ݍ௘) in the case of true fixed-source
problems, or it could be a fission source iterate when nested inside power iteration.

(ii) A full energy-space-angle sweep each Krylov iteration to calculate the action of the operator on the
latest iterate,

௞ݕ = ܫ) − ௞ , (14)ݒ(ܵܯܶ

 where ݒ௞ is the Krylov vector in iteration ݇. We note that this vector is dimensioned ݒ௞ ௚,௖,௡,௟,௠௞ݒ}≡ } where ݃ is the energy group, ܿ is the cell index, ݊ is the spatial unknown index in the
cell, and (݈, ݉) are the spherical harmonic moment indices.

For eigenvalue problems we have implemented an Arnoldi Krylov subspace solver using the Trilinos

Anasazi package [8] that can (1) take full advantage of the energy parallelism and (2) be more efficient
than power iteration. Arnoldi iteration requires the eigenproblem to be written in standard form,

ݔܣ = (15) . ݔߣ

Arnoldi iteration can implemented with either an energy-dependent or energy-independent eigenvector
as follows:

ϕܣ2 = ݇ϕ , ܣ = ܫ) − (16) (energydependent) , ܨܯଵܶି(ܵܯܶ

Γܣ = ݇Γ , ܣ = ܫ)்݂ − (17) (energyindependent) . ߯ܯଵܶି(ܵܯܶ

In either case, the implementation of Arnoldi iteration requires a matrix-vector multiply at each Krylov
iteration of the form

௞ݕ = ௞ . (18)ݒܣ

For the energy-dependent case we have

௞ݖ = ௞ , (matrixݒܨܯܶ − vectormultiplyandsweep) (19)

ܫ) − ௞ݕ(ܵܯܶ = ௞ . (ϐixedݖ − sourcesolve) (20)

Similarly, for the energy-independent eigenvector the steps are

௞ݖ = ௞ , (matrixݒ߯ܯܶ − vectormultiplyandsweep) (21)

ܫ) − ௞ݕ(ܵܯܶ = ௞ , (ϐixedݖ − sourcesolve) (22)

௞ݕ ← ௞ . (dotݕ்݂ − product) (23)

Both methods require a fixed-source solve each iteration. We consider both the energy-dependent and
independent approaches because we are uncertain a priori which method will be optimal for a given
problem. The energy-dependent approach allows parallelization of the eigenvalue solve across energy at
the expense of a much larger eigenvector. The energy-independent approach allows only energy-domain
parallelization over the fixed-source solve, and the eigenvalue solve is parallel only over space-angle.
However, this decomposition may be more efficient because the eigenvector is smaller, especially when
work is dominated by the inner multigroup fixed-source solve.

3. Sweep-Based Parallelism
Denovo [6] uses the KBA wavefront algorithm to parallelize the space-angle transport sweeps shown in
Eqs. (4) and (5). Unfortunately, KBA alone provides insufficient parallelism on very large systems. The
following analysis will demonstrate its shortcomings. The theoretical efficiency of KBA, ignoring
machine latency, is

୫ୟ୶ߝ = ଶெ௄ଶெ௄ା௄್(ூ/ூ್ା௃/௃್ିଶ) = ଶெ஻಼ଶெ஻಼ା௉಺ା௉಻ିଶ , (24)

where (ܫ, ,ܬ ,ݔ) are the number of cells in (ܭ ,ݕ ,ݔ) respectively. The number of cells per domain in ,(ݖ ,௕ܫ) is given by (ݕ .dimension ݖ ௕ is the number of cells per on-processor block in theܭ ௕), andܬ
Then, ூܲ and ௃ܲ are the number of processors in the ݔ and ݕ directions, respectively; ܤ௄ is the
number of blocks in the ݖ direction on each domain; and ܯ is the number of angles per octant.

We have done strong scaling studies on Jaguar* with a 400 × 400 × 400 cell mesh. The results are
shown in Figure 3. Figure 3a shows that while a very high (> 90%) maximum theoretical parallel
efficiency is estimated, this value is impossible to achieve in practice. To get high theoretical
efficiencies, the number of cells per block (ܫ௕ × ௕ܬ × ௕) becomes very small. This makes sense in theܭ
abstract because work is passed to subsequent blocks more rapidly. However, in reality the latency per
message quickly overwhelms the theoretical prediction. When the number of cells per block becomes
very small, data spend more time waiting in MPI message queues than working to solve the block. This
effect is illustrated in Figure 3b. The deviation between the theoretical prediction and the measured
efficiency becomes small as the block size grows. In summary, high theoretical efficiencies requiring
small numbers of cells per block cannot be achieved, but theoretical efficiencies that result from larger
block sizes can be realized.

* Jaguar XT5 supercomputer at the Oak Ridge Leadership Computing Facility (OLCF).

(a)

(b)

Figure 3. Denovo strong scaling results on Jaguar; (a) strong
scaling with ܤ௄ = 40 blocks (blue) and ܤ௄ = 5 blocks (red)
and (b) the deviation from the theoretical maximum as a function
of number of cells per block.

The repercussions from this analysis are obvious; namely, the full extent of computational resources

available on Jaguar cannot be effectively utilized. The best efficiencies are obtained when the block size
can be set greater than ~1500. Thus, for any given problem, the maximum number of cores is
predetermined by the minimum block size. Even a 500M cell problem will be limited to 15,000–20,000
cores under these restrictions. To utilize the full resources of Jaguar we must find additional variables to
parallelize. Using the advanced solvers in Denovo, a multilevel decomposition over energy will provide
the necessary parallelism.

4. Multilevel Parallel Decompositions
Having described the multigroup solvers in § 2 and discussed the limitations of parallelizing only the
space-angle sweep, we now explain the parallel implementation of Denovo's energy-space-angle
decomposition. The multilevel energy-space decomposition is illustrated in Figure 4. In this

Figure 4. Multilevel energy-space decomposition in Denovo. This example has 3
sets, each containing 16 blocks, resulting in 48 total domains. The block (blue),
set (green), and domain (red) IDs are indicated by ܾ, ݏ, and ݀, respectively.

decomposition, space is partitioned into blocks. Energy is partitioned into sets. Each set contains the full
mesh (all of the blocks) such that KBA sweeps never cross set boundaries. Every (block, set)
combination is termed a domain. The total number of domains is currently the same as the number of
MPI processes in a parallel job. The old Denovo space-angle decomposition can be thought of as a
single-set energy decomposition over ூܲ × ௃ܲ blocks. A benefit of this energy-space partitioning is that
all of the solvers described in § 2 can be implemented in the new decomposition using Denovo's
existing space-angle sweep machinery.

To solve the multigroup equations, Eq. 14 implies a matrix-vector multiply of the form

௚ݏ = ௚ܵ଴ݒ଴ + ௚ܵଵݒଵ + ⋯ + ௚ܵீ(25) . ீݒ

Instead of communicating all of the groups to each set so that the matrix-vector multiply can be
completed locally, we replicate the source vector ݏ. Then, each set performs its part of the matrix-vector
multiply followed by a global reduction. The global reduction is performed using a communicator that
relates all blocks with the same index across sets. After the global reduction, each set has the complete
source vector ݏ, even though it will utilize only the components of ݏ that are local to the set.

After calculating the sweep source ݏ, the sweeps for each local group on a set can be performed
without any interset communication. The sweeps require only communication between blocks within a
set. The only exception to this rule is when the energy-independent version of Arnoldi is applied. In this
case, the eigenvector must be summed across all sets in a manner analogous to that described above for
calculating the sweep source.

5. Denovo Solver Taxonomy
Having reviewed the new solvers and parallel decompositions in Denovo, we will now summarize the
complete set of solver options that are available in the code. We have separated the taxonomy into

Within-Group Solvers, Multigroup Solvers, and Eigenvalue Solvers. These are arranged in levels
according to the following:

Fixed-source problems are solved using multigroup solvers.

5.1. Within-Group Solvers
The within-group solvers are used to solve Eq. (7). All of the within-group solvers are parallelized over
space because, by definition, they require no coupling between energy groups. Thus, they operate only
within a set, not across sets.

Solver Preconditioning Parallelization

Direct Krylov DSA Interblock KBA
Residual Krylov DSA Interblock KBA
Source Iteration Interblock KBA

5.2. Multigroup Solvers
The multigroup solvers are used to solve Eq. (4). They can be used independently to solve fixed-source
problems, or they can be used in the inner iterations of eigenvalue problems. The multigroup solvers are
parallelized over space-angle (blocks) and energy (sets), although not all solvers support energy
parallelization. For example, the Gauss-Seidel solver does not support parallelization over energy.

Solver Preconditioning Parallelization
Gauss-Seidel TTG Single-set energy partitioning

Gauss-Seidel/Krylov
Gauss-Seidel over downscatter groups replicated
on each set, Krylov iteration over upscatter groups
using multiset energy partitioning

Krylov Multigrid Energy, LU* Multiset energy partitioning
*In development.

5.3. Eigenvalue Solvers
The eigenvalue solvers solve Eq. (5). The parallelization is largely determined by the choice of
multigroup solver. Some eigenvalue solvers can solve both energy-dependent and energy-independent
eigenvectors, and this choice dictates the parallelization strategy.

Solver Eigenvector Multigroup Solvers

Power Iteration Energy independent
Gauss-Seidel, Krylov, and
Gauss-Seidel/Krylov

Arnoldi
Energy independent/
energy dependent

Krylov and Gauss-Seidel/Krylov

Rayleigh Quotient Iteration Energy dependent Krylov

6. Results
Each of the solvers and parallel algorithms has been independently verified through the Denovo test
suite. To test the performance on leadership-class computing hardware, we have choosen a generic
whole-core pressurized water reactor (PWR) model as a test problem. This model was originally
developed as a whole-core, pin-homogenized, two-group benchmark problem by Électricité de France
(EDF) working with the University of Florida [9]. Although the ultimate objective is to perform
whole-core, pin-resolved, 3-D transport simulations, a pin-homogenized problem serves as a useful and
realistic benchmark problem. Denovo is used to solve Eq. (5) in order to calculate the ݇-eigenvalue and
the scalar flux throughout the core. Using the scalar flux, the pin power distribution, fission source, and
group-wise power distributions can be analyzed. The ability to solve pin-homogenized, whole-core
problems with transport, as opposed to diffusion or other low-order approximations, is the first step
towards fully predictive reactor core modeling and simulation. To achieve first-principles predictive
capability, each pin would be fully resolved in the whole-core 3-D model. This objective cannot be
approached until we have demonstrated the ability to solve pin-homogenized 3-D reactor problems with
full transport.

The model is a generalization of a Westinghouse PWR-900 core that has a core height of 4.2 m, an
assembly height of 3.6 m, and a lattice pitch of 1.26 cm. The core features 289 assemblies, of which 157
are fuel and 132 are in the reflector. Each assembly contains a 17 × 17 array of homogenized fuel pins
that are arranged with 1/4 lattice symmetry as shown in Figure 5a. Three different fuel enrichments
ranging from 1.5% to 3.25% are used in the assemblies. We implemented this model in the TRITON
sequence of SCALE [10] to generate 44-group pin-homogenized cross sections to supplement the
two-group set defined in the benchmark. Each set of pin-homogenized cross sections contains
135 unique materials (45 pins at 3 levels of enrichment). The 2-D radial view of the core is shown in
Figure 5b.

For Denovo, the model was discretized into 2 × 2 × 700 spatial cells per homogenized fuel pin,
resulting in a total mesh size of 233,858,800 cells. An angular quadrature containing 168 angles, ଴ܲ
scattering (one angular moment), and step-characteristics spatial differencing was used for all
calculations. These parameters yielded 39,288,278,400 DOF per energy group. All calculations were
performed on the Jaguar XT5 computer at the OLCF.

Table 1 compares the different solvers for the two-group version of the PWR-900 benchmark. The
17,424 spatial domains used for the standard Gauss-Seidel (GS) solver represent the maximum number
of cores that could be effectively used for this problem. To use more computing resource the multilevel
decomposition is required. These results show that the multigroup Krylov solvers are very effective, and
they allow an efficient multilevel decomposition. However, because this is a coarse energy benchmark,
we cannot make dramatic conclusions about the performance of the solvers on real problems of interest.

 (a) (b)

Figure 5. (a) PWR-900 17 × 17 pin fuel assembly. The pins have been homogenized into
45 unique materials in each assembly. All assembly enrichments have the same 1/4 symmetry
pattern. (b) 2-D radial cut of the reactor core. The low-enrichment assemblies are light blue, the
medium enrichment assemblies are red/blue, and the high-enrichment assemblies are
yellow/orange.

Table 1. Solver comparisons for 2 group version of the PWR-900 benchmark
problem. In each case the eigenvalue was converged to 1-3. Each problem had
78,576,556,800 DOF.

Solver Blocks Sets Domains
Solver Time

(min)
PI/GS + TTG 17,424 1 17,424 11.00
PI/GMRES 10,200 2 20,400 3.03
Arnoldi/GMRES 10,200 2 20,400 2.05

To show the validity of this approach for fully resolved reactor problems, we must investigate the

performance of the parallel algorithm and solvers on problems with more groups. We have run the same
PWR-900 problem with 44 groups, resulting in 1,728,684,249,600 DOF. Four versions of the problem
are executed: power iteration (PI) with GS plus GMRES, PI with GMRES, Arnoldi with GS plus
GMRES, and Arnoldi with GMRES. With the multigroup GS plus GMRES option, multilevel
partitioning is performed only over the upscattering region of the scattering matrix. For this option, the
lower-triangular downscatter region is replicated on each set. With the multigroup GMRES option,
multilevel partitioning is performed over the whole scattering matrix, regardless of its structure. Each
problem was run with 10,200 blocks and 11 sets, resulting in 112,200 domains.

The results of these runs are given in terms of the weak-scaling parallel efficiency that is defined as

ߝ = ఛ౨౛౜ఛౌ ቀ ୈ୓୊ౌୈ୓୊౨౛౜ቁ , ߬ = ݐ × ௣ܰ . (26)

Here, ݐ is the wall-clock time and ௣ܰ is the number of processors (cores). The “ref” subscript denotes a
reference problem run, and the “P” subscript refers to the target problem. Weak-scaling curves for the
four multilevel solvers are shown using the PI/GS plus TTG problem as the reference in Figure 6. These
results show that (1) the multilevel parallel decomposition allows scaling up to ܱ(100ܭ) cores and
(2) the solvers combined with the multilevel parallel decomposition are generally more efficient than

standard PI/GS-based schemes (even with acceleration). In particular, the Arnoldi eigenvalue solver is
significantly more efficient than PI, and we expect this efficiency difference to become larger as tighter
eigenvalue tolerances are required. In general, reactor design calculations require eigenvalue tolerances
of approximately 1 × 10–5, 2 orders of magnitude tighter than our current 1 × 10–3 tolerance. Early test
problems indicate that the efficiency of the Arnoldi solver approaches 6 times the efficiency of PI at
these tighter tolerances.

 (a) (b)

Figure 6. (a) Weak scaling efficiencies for the 44-group version of the PWR-900 benchmark, and
(b) peak machine efficiencies on Jaguar XT5.

7. Conclusions
We have implemented a new suite of eigenvalue and multigroup solvers in the Denovo radiation
transport code that utilize a multilevel energy decomposition. Using these solvers in concert with the
multilevel parallel decomposition allows Denovo to scale to ܱ(100ܭ) processors on leadership-class
hardware. Original space-angle parallel methods were fundamentally limited in how much machine
resource could be used for a given problem size. The multilevel decomposition overcomes this barrier
and should allow scaling to exascale-level platforms and beyond.

Acknowledgments
The authors wish to thank Kevin Clarno and Brenden Mervin, ORNL, for help in generating the
multigroup cross-section sets. Work for this paper was supported by Oak Ridge National Laboratory,
which is managed and operated by UT-Batelle, LLC, for the U.S. Department of Energy under Contract
No. DE-AC05-00OR22725.

References
[1] Clarno K. 2007. ORNL LDRD Report. Tech. Rep. D06–087 Oak Ridge National Laboratory.
[2] Zhong Z, Downar T, Xu Y, Williams M, and DeHart M. 2006. Nuclear Science and Engineering

154.
[3] Baker R and Koch K. 1998. Nuclear Science and Engineering 128 312–320.
[4] Clarno K. 2007. Transactions of the American Nuclear Society 97.
[5] Pautz S. 2002. Nuclear Science and Engineering 140 111–136.
[6] Evans T, Stafford A, Slaybaugh R, and Clarno K. 2010. Nuclear Technology 171 171–200.
[7] Evans T, Clarno K, and Morel J. 2010. Nuclear Science and Engineering 165 292–304.

[8] Baker C, Hetmaniuk U, Lehoucq R, and Thornquist H. 2009. ACM Transactions on Mathematical
Software 36.

[9] Courau T. 2009. Specifications of a 3D PWR core benchmark for neutron transport. Technical
Note CR-128/2009/014 EDF-SA.

[10] Oak Ridge National Laboratory. 2009. SCALE: A Modular Code System for Performing
Standardized Computer Analyses for Licensing Evaluations Version 6.

