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Abstract. We have implemented a new multilevel parallel decomposition in the Denovo discrete 
ordinates radiation transport code. In concert with Krylov subspace iterative solvers, the 
multilevel decomposition allows concurrency over energy in addition to space-angle. The 
original space-angle partitioning in Denovo placed an effective limit on the scalability of the 
transport solver that was highly dependent on the problem size. The added phase-space 
concurrency combined with the high-performance Krylov solvers has enabled weak scaling to ܱ(100ܭ) cores on the Jaguar XT5 supercomputer. Furthermore, the multilevel decomposition 
provides sufficient concurrency to scale to exascale computing and beyond. 

1. Introduction 
Predictive nuclear energy simulations will involve the coupled modeling of many physical regimes, 
including Boltzmann transport, and will require tremendous computational resources. Experience in the 
Department of Energy (DOE) Advanced Simulation and Computing program, astrophysics, and nuclear 
energy have demonstrated that, in coupled-physics calculations, a 3-D Boltzmann transport solver will 
generally require the vast majority of computational resources, in terms of both memory and operations, 
because of the seven-dimensional phase-space (location, velocity [energy + angle], and time). For a 
nuclear reactor simulation, the scale of the problem is large: 5 orders of magnitude in space and 10 in 
neutron energy. A transport solver that incorporates a resolved discretization for all scales using current 
discrete models would require 1017–21 degrees of freedom (DOF) for a single timestep, which is beyond 
even exascale computational resources. This problem size precludes, for the time being, a single 
integrated ab initio computational approach. Instead, variations of current multilevel techniques will 
continue, with the new objective being to make the process more consistent and, subsequentially, more 
predictive. 

Present reactor transport methods use an inconsistent three-level homogenization approach, often 
utilizing distinct simulation codes, in modeling radiation transport in the core of a nuclear reactor. 
Figure 1 shows the spatial and energy domains, respectively, of this multiscale challenge: ߙ, use of a 
fine mesh in 1-D cylindrical geometry of an approximate small subset (pincell) of the reactor core with a 
first-principles representation of the energy spectrum; ߚ, use of a coarser mesh with a 2-D transport 
solution in a larger subset (lattice) of the core with grouped representation of the energy spectrum 
provided by the previous step; and ߛ, use of a very coarse mesh in a 3-D diffusive transport of neutrons 
in the full homogenized core of the reactor with a very coarse representation of the energy spectrum  



 

Figure 1. Three levels of reactor geometries and energy structures. 
 

provided by the previous step. The first two steps (ߙ,  require 10଻ି଼ DOF with 10ଶିଷ independent (ߚ
calculations, each on single-processor machines. Recent work at Oak Ridge National Laboratory 
(ORNL) has demonstrated that, with moderate computational resources, this can be reduced to an  
inconsistent two-step approach, where step (A) utilizes the energy fidelity of ߙ with the spatial domain 
of ߚ and step (B) uses the energy fidelity of ߚ and the spatial domain of [1,2] ߛ. In this approach, each 
step would require 10ଵଵିଵଷ DOF per step with 10ଶ independent high-order (A) calculations for every 
timestep. 

The solution of the first-order form of the Boltzmann transport equation requires multiple wavefront 
solutions over each discrete angle. The wavefront solver imposes a fundamental limitation on the 



scalability of the algorithm because of the upstream dependencies of downstream regions. Various 
approaches to this problem over the last decade have yielded mixed results. The Koch-Baker-Alcouffe 
(KBA) [3] algorithm for structured 3-D grids is very efficient in that the transport operator can be 
inverted in a single solve. However, the scalability is limited by communication latency such that this 
algorithm is limited by problem size and generally will not scale to ܱ(100ܭ)  cores. 
Parallel-Block-Jacobi methods have been applied to both structured and unstructured grids yielding 
excellent weak-scaling results [4]. But, these methods are less efficient in terms of memory and iteration 
count when compared with direct wavefront algorithms. Graph-based direct methods have been 
investigated on unstructured grids, but these algorithms have significant scaling limitations [5]. 

To reduce today's three-level approach to consistent single- or two-level schemes, the 
orders-of-magnitude increase in fidelity of each of the steps will require substantially more 
computational resources than present algorithms utilize. Therefore, novel approaches to parallelize the 
transport equation must be developed that can overcome the wavefront limitation and take full 
advantage of the complete computational resources. 

A parallel decomposition over energy groups and an Arnoldi-based ݇-eigenvalue solver have been 
developed for the Denovo code. Denovo is a 3-D discrete ordinates (ܵே) multigroup radiation transport 
code for radiation shielding and reactor physics applications under active development at ORNL [6.7]. 
The new energy decomposition is in addition to the KBA-based spatial domain decomposition already 
present in Denovo. This multilevel decomposition allows parallel scaling up to hundreds of thousands of 
cores. Additionally, the new Arnoldi solver can solve ݇-eigenvalue problems with many fewer mesh 
sweeps than the traditional power iteration method. 

In this paper we will describe Denovo's multilevel parallel decomposition and the solver 
technologies that complement it. Solvers for the multigroup ܵே equation are described in § 2. In § 3 
we show the limitations of KBA space-angle parallelism on leadership class platforms. Finally, we 
describe a multilevel parallel decomposition that overcomes these shortcomings in § 4, and in § 5 we 
summarize the complete set of solver options available in Denovo. Results that show the efficiency of 
these methods are shown in § 6. 

2. Multigroup Solvers 
To see how a multilevel energy decomposition can be beneficial and how it will be implemented, we 
briefly review the fundamental solver strategies in Denovo; Ref. [6] can be consulted for full details. 
The multigroup ܵே equations can be written in operator form as  

߰ۺ  = ϕ܁ۻ +  ௘ ,    (ϐixed source) (1)ݍ

߰ۺ  = ϕ܁ۻ + ଵ௞  ϕ .    (eigenvalue) (2)்݂߯ۻ

The state of these equations is defined in angular flux moments, ߶, that are related to the discrete 
angular flux through  

 ϕ = ۲߰ , (3) 

where ۲ is the discrete-to-moment operator that integrates discrete angles into angular flux moments 
using quadrature rules. ۺ  is the first-order linear differential transport operator, ۻ  is the 
moment-to-discrete operator that projects angular flux moments into discrete angle space, and ܁ is the 
group-to-group scattering matrix. In the eigenvalue form of the equation, fT is the row vector of fission 
cross sections, ߯ is the fission spectrum vector, and ݇ is the largest eigenvalue. 

Operating by DL–1, defining T = DL–1, and rearranging terms, the fixed-source problem is  

 (۷ − ߶(܁ۻ܂ =  (4) , ݍ

where q = ݍࢀ௘. Similarly, the eigenvalue problem becomes  

 (۷ − ߶(܁ۻ܂ = ଵ௞  (5) , ߶۴ۻ܂



where ۴ = ்݂߯ is the full-rank fission matrix. The operator L–1 can be formed into a lower-triangular 
system if one sweeps the space-angle grid in the direction of neutron travel. The resulting transport  
sweep is the operation that is parallelized using the KBA algorithm. This matrix is never formed in 
practice; only the action of the operator on a vector, y = L–1v, is required. 

The traditional method for solving Eq. (4) is Gauss-Seidel iteration,  

 (۷ − ܯܶ ௚ܵ௚)ϕ௚௞ାଵ = ௚ݍ + ∑)ܯܶ  ௚ିଵ௚ᇱୀ଴ ௚ܵ௚ᇱϕ௚ᇱ௞ାଵ + ∑  ௚ீᇱୀ௚ାଵ ௚ܵ௚ᇱϕ௚ᇱ௞ ) , (6) 

which is the same as solving ܩ one-group space-angle problems per Gauss-Seidel iteration. We refer to 
these one-group problems as within-group equations, and they have the following form:  

 (۷ − ܯܶ ௚ܵ௚)ϕ௚ =  ത௚ , (7)ݍ

where ݍത௚ is an effective group source that includes all in-scattering, fission, and/or external sources for 
the group. When using Gauss-Seidel iteration over energy, the within-group solves represent a set of 
inner iterations. Denovo provides several solvers (Krylov, source iteration) for the within-group 
equations, and Diffusion Synthetic Acceleration (DSA) is available as a preconditioner for the Krylov 
options. Obviously, when ܁ is lower triangular (indicating downscattering only) the solution converges 
in one Gauss-Seidel iteration. However, when ܁ is energy dense, the solution can converge very slowly. 
This structure occurs in the low-energy region of the spectrum where neutrons undergo Maxwellian 
upscattering. A typical ܁ for a 27-group set of common reactor materials is illustrated in Figure 2. 

 

 

Figure 2. Sparsity plot of the scattering matrix 
for a problem containing iron, graphite, and 
heavy water. The data has 27 energy groups, and 
the matrix is lower-triangular through group 14. 
The full matrix is dimensioned over energy- 
space-angle with angle represented by Legendre 
moment expansion. 

 
The standard way to solve Eq. (5) is power iteration. We start by defining an energy-independent 

eigenvalue,  

 Γ = ்݂ϕ . (8) 



Then, Eq. (5) can be written  

Γܣ  = ݇Γ , (9) 

with  

ܣ  = ܫ)்݂ −  (10) . ߯ܯଵܶି(ܵܯܶ

Solving by power iteration proceeds as follows  

 Γ௞ାଵ = ଵ௞  Γ௞ . (11)ܣ

The operation ܣΓ௞ necessarily involves solving multigroup problems with the same form as Eq. (4), 

ܫ)  − ௞ݕ(ܵܯܶ =  Γ௞ . (12)߯ܯܶ

Both Gauss-Seidel iteration for fixed-source problems and power iteration (with Gauss-Seidel 
inners) are provided in the current version of Denovo. While the implementation in Denovo is enhanced 
by applying Transport Two-Grid (TTG) acceleration to the Gauss-Seidel iterations [6] and using 
GMRES(݉) on the inner one-group solves, a fundamental limitation of these solvers is that they are 
parallelizable only over space-angle variables. The recursive nature of Gauss-Seidel prevents effective 
parallelization over energy. One could use parallel block-Jacobi iteration, but this option results in 
solvers that are too inefficient to be of practical use on most problems. 

Instead, the Krylov solver framework in Denovo that is currently used in the inner one-group 
space-angle solves has been expanded to include energy. Including energy in the Krylov vectors enables 
the following benefits: 

• The energy variable is decoupled allowing groups to be solved independently.  
• Krylov subspace iteration is more efficient and robust than Gauss-Seidel iteration.  
• Preconditioning a Krylov iteration is generally more robust and stable than Gauss-Seidel 

acceleration.  
Furthermore, including energy in the Krylov vector does not invalidate any of the existing sweep 
mechanics that are already implemented in Denovo. 

For multigroup fixed-source problems in the form of Eq. (4), application of a Krylov method 
requires the following two steps: 
(i) A full energy-space-angle sweep of the right-hand side source,  

ݍ  =  ො , (13)ݍܶ

 where ݍො is an effective source that could be an external source (ݍ௘) in the case of true fixed-source 
problems, or it could be a fission source iterate when nested inside power iteration.  

(ii) A full energy-space-angle sweep each Krylov iteration to calculate the action of the operator on the 
latest iterate,  

௞ݕ  = ܫ) −  ௞ , (14)ݒ(ܵܯܶ

 where ݒ௞  is the Krylov vector in iteration ݇. We note that this vector is dimensioned ݒ௞ ௚,௖,௡,௟,௠௞ݒ}≡ } where ݃ is the energy group, ܿ is the cell index, ݊ is the spatial unknown index in the 
cell, and (݈, ݉) are the spherical harmonic moment indices.  

 
For eigenvalue problems we have implemented an Arnoldi Krylov subspace solver using the Trilinos 

Anasazi package [8] that can (1) take full advantage of the energy parallelism and (2) be more efficient 
than power iteration. Arnoldi iteration requires the eigenproblem to be written in standard form,  

ݔܣ  =  (15) . ݔߣ

Arnoldi iteration can implemented with either an energy-dependent or energy-independent eigenvector 
as follows:  



ϕܣ2  = ݇ϕ ,    ܣ = ܫ) −  (16) (energydependent)    , ܨܯଵܶି(ܵܯܶ

Γܣ  = ݇Γ ,    ܣ = ܫ)்݂ −  (17) (energyindependent)    . ߯ܯଵܶି(ܵܯܶ

In either case, the implementation of Arnoldi iteration requires a matrix-vector multiply at each Krylov 
iteration of the form  

௞ݕ  =  ௞ . (18)ݒܣ

For the energy-dependent case we have  

௞ݖ  = ௞ ,    (matrixݒܨܯܶ − vectormultiplyandsweep) (19) 

ܫ)  − ௞ݕ(ܵܯܶ = ௞ .    (ϐixedݖ − sourcesolve) (20) 

Similarly, for the energy-independent eigenvector the steps are  

௞ݖ  = ௞ ,    (matrixݒ߯ܯܶ − vectormultiplyandsweep) (21) 

ܫ)  − ௞ݕ(ܵܯܶ = ௞ ,    (ϐixedݖ − sourcesolve) (22) 

௞ݕ  ← ௞ .    (dotݕ்݂ − product) (23) 

Both methods require a fixed-source solve each iteration. We consider both the energy-dependent and 
independent approaches because we are uncertain a priori which method will be optimal for a given 
problem. The energy-dependent approach allows parallelization of the eigenvalue solve across energy at 
the expense of a much larger eigenvector. The energy-independent approach allows only energy-domain 
parallelization over the fixed-source solve, and the eigenvalue solve is parallel only over space-angle. 
However, this decomposition may be more efficient because the eigenvector is smaller, especially when 
work is dominated by the inner multigroup fixed-source solve. 

3. Sweep-Based Parallelism 
Denovo [6] uses the KBA wavefront algorithm to parallelize the space-angle transport sweeps shown in 
Eqs. (4) and (5). Unfortunately, KBA alone provides insufficient parallelism on very large systems. The 
following analysis will demonstrate its shortcomings. The theoretical efficiency of KBA, ignoring 
machine latency, is  

୫ୟ୶ߝ  = ଶெ௄ଶெ௄ା௄್(ூ/ூ್ା௃/௃್ିଶ) = ଶெ஻಼ଶெ஻಼ା௉಺ା௉಻ିଶ , (24) 

where (ܫ, ,ܬ ,ݔ) are the number of cells in (ܭ ,ݕ ,ݔ) respectively. The number of cells per domain in ,(ݖ ,௕ܫ) is given by (ݕ  .dimension ݖ ௕ is the number of cells per on-processor block in theܭ ௕), andܬ
Then, ூܲ  and ௃ܲ  are the number of processors in the ݔ  and ݕ directions, respectively; ܤ௄  is the 
number of blocks in the ݖ direction on each domain; and ܯ is the number of angles per octant. 

We have done strong scaling studies on Jaguar* with a 400 × 400 × 400 cell mesh. The results are 
shown in Figure 3. Figure 3a shows that while a very high (> 90%) maximum theoretical parallel 
efficiency is estimated, this value is impossible to achieve in practice. To get high theoretical 
efficiencies, the number of cells per block (ܫ௕ × ௕ܬ ×  ௕) becomes very small. This makes sense in theܭ
abstract because work is passed to subsequent blocks more rapidly. However, in reality the latency per 
message quickly overwhelms the theoretical prediction. When the number of cells per block becomes 
very small, data spend more time waiting in MPI message queues than working to solve the block. This 
effect is illustrated in Figure 3b. The deviation between the theoretical prediction and the measured 
efficiency becomes small as the block size grows. In summary, high theoretical efficiencies requiring 
small numbers of cells per block cannot be achieved, but theoretical efficiencies that result from larger 
block sizes can be realized. 

 
                       
* Jaguar XT5 supercomputer at the Oak Ridge Leadership Computing Facility (OLCF). 
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(b) 

Figure 3. Denovo strong scaling results on Jaguar; (a) strong 
scaling with ܤ௄ = 40 blocks (blue) and ܤ௄ = 5  blocks (red) 
and (b) the deviation from the theoretical maximum as a function 
of number of cells per block. 

 
The repercussions from this analysis are obvious; namely, the full extent of computational resources 

available on Jaguar cannot be effectively utilized. The best efficiencies are obtained when the block size 
can be set greater than ~1500. Thus, for any given problem, the maximum number of cores is 
predetermined by the minimum block size. Even a 500M cell problem will be limited to 15,000–20,000 
cores under these restrictions. To utilize the full resources of Jaguar we must find additional variables to 
parallelize. Using the advanced solvers in Denovo, a multilevel decomposition over energy will provide 
the necessary parallelism. 

4. Multilevel Parallel Decompositions 
Having described the multigroup solvers in § 2 and discussed the limitations of parallelizing only the 
space-angle sweep, we now explain the parallel implementation of Denovo's energy-space-angle 
decomposition. The multilevel energy-space decomposition is illustrated in Figure 4. In this  



 

Figure 4. Multilevel energy-space decomposition in Denovo. This example has 3 
sets, each containing 16 blocks, resulting in 48 total domains. The block (blue), 
set (green), and domain (red) IDs are indicated by ܾ, ݏ, and ݀, respectively. 

 
decomposition, space is partitioned into blocks. Energy is partitioned into sets. Each set contains the full 
mesh (all of the blocks) such that KBA sweeps never cross set boundaries. Every (block, set) 
combination is termed a domain. The total number of domains is currently the same as the number of 
MPI processes in a parallel job. The old Denovo space-angle decomposition can be thought of as a 
single-set energy decomposition over ூܲ × ௃ܲ blocks. A benefit of this energy-space partitioning is that 
all of the solvers described in § 2 can be implemented in the new decomposition using Denovo's 
existing space-angle sweep machinery. 

To solve the multigroup equations, Eq. 14 implies a matrix-vector multiply of the form  

௚ݏ  = ௚ܵ଴ݒ଴ + ௚ܵଵݒଵ + ⋯ + ௚ܵீ(25) . ீݒ 

Instead of communicating all of the groups to each set so that the matrix-vector multiply can be 
completed locally, we replicate the source vector ݏ. Then, each set performs its part of the matrix-vector 
multiply followed by a global reduction. The global reduction is performed using a communicator that 
relates all blocks with the same index across sets. After the global reduction, each set has the complete 
source vector ݏ, even though it will utilize only the components of ݏ that are local to the set. 

After calculating the sweep source ݏ, the sweeps for each local group on a set can be performed 
without any interset communication. The sweeps require only communication between blocks within a 
set. The only exception to this rule is when the energy-independent version of Arnoldi is applied. In this 
case, the eigenvector must be summed across all sets in a manner analogous to that described above for 
calculating the sweep source. 

5. Denovo Solver Taxonomy 
Having reviewed the new solvers and parallel decompositions in Denovo, we will now summarize the 
complete set of solver options that are available in the code. We have separated the taxonomy into 



Within-Group Solvers, Multigroup Solvers, and Eigenvalue Solvers. These are arranged in levels 
according to the following:  

 
Fixed-source problems are solved using multigroup solvers. 

5.1. Within-Group Solvers 
The within-group solvers are used to solve Eq. (7). All of the within-group solvers are parallelized over 
space because, by definition, they require no coupling between energy groups. Thus, they operate only 
within a set, not across sets.  

 
Solver Preconditioning Parallelization 

Direct Krylov  DSA Interblock KBA 
Residual Krylov  DSA Interblock KBA 
Source Iteration   Interblock KBA 

5.2. Multigroup Solvers 
The multigroup solvers are used to solve Eq. (4). They can be used independently to solve fixed-source 
problems, or they can be used in the inner iterations of eigenvalue problems. The multigroup solvers are 
parallelized over space-angle (blocks) and energy (sets), although not all solvers support energy 
parallelization. For example, the Gauss-Seidel solver does not support parallelization over energy.  

 
Solver  Preconditioning  Parallelization  
Gauss-Seidel  TTG  Single-set energy partitioning  

Gauss-Seidel/Krylov   
Gauss-Seidel over downscatter groups replicated 
on each set, Krylov iteration over upscatter groups 
using multiset energy partitioning  

Krylov  Multigrid Energy, LU*  Multiset energy partitioning  
*In development.  



5.3. Eigenvalue Solvers 
The eigenvalue solvers solve Eq. (5). The parallelization is largely determined by the choice of 
multigroup solver. Some eigenvalue solvers can solve both energy-dependent and energy-independent 
eigenvectors, and this choice dictates the parallelization strategy.  

 
Solver Eigenvector Multigroup Solvers 

Power Iteration  Energy independent  
Gauss-Seidel, Krylov, and 
Gauss-Seidel/Krylov  

Arnoldi  
Energy independent/ 
energy dependent  

Krylov and Gauss-Seidel/Krylov 

Rayleigh Quotient Iteration  Energy dependent  Krylov  

6. Results 
Each of the solvers and parallel algorithms has been independently verified through the Denovo test 
suite. To test the performance on leadership-class computing hardware, we have choosen a generic 
whole-core pressurized water reactor (PWR) model as a test problem. This model was originally 
developed as a whole-core, pin-homogenized, two-group benchmark problem by Électricité de France 
(EDF) working with the University of Florida [9]. Although the ultimate objective is to perform 
whole-core, pin-resolved, 3-D transport simulations, a pin-homogenized problem serves as a useful and 
realistic benchmark problem. Denovo is used to solve Eq. (5) in order to calculate the ݇-eigenvalue and 
the scalar flux throughout the core. Using the scalar flux, the pin power distribution, fission source, and 
group-wise power distributions can be analyzed. The ability to solve pin-homogenized, whole-core 
problems with transport, as opposed to diffusion or other low-order approximations, is the first step 
towards fully predictive reactor core modeling and simulation. To achieve first-principles predictive 
capability, each pin would be fully resolved in the whole-core 3-D model. This objective cannot be 
approached until we have demonstrated the ability to solve pin-homogenized 3-D reactor problems with 
full transport. 

The model is a generalization of a Westinghouse PWR-900 core that has a core height of 4.2 m, an 
assembly height of 3.6 m, and a lattice pitch of 1.26 cm. The core features 289 assemblies, of which 157 
are fuel and 132 are in the reflector. Each assembly contains a 17 × 17 array of homogenized fuel pins 
that are arranged with 1/4 lattice symmetry as shown in Figure 5a. Three different fuel enrichments 
ranging from 1.5% to 3.25% are used in the assemblies. We implemented this model in the TRITON 
sequence of SCALE [10] to generate 44-group pin-homogenized cross sections to supplement the 
two-group set defined in the benchmark. Each set of pin-homogenized cross sections contains 
135 unique materials (45 pins at 3 levels of enrichment). The 2-D radial view of the core is shown in 
Figure 5b. 

For Denovo, the model was discretized into 2 × 2 × 700 spatial cells per homogenized fuel pin, 
resulting in a total mesh size of 233,858,800 cells. An angular quadrature containing 168 angles, ଴ܲ 
scattering (one angular moment), and step-characteristics spatial differencing was used for all 
calculations. These parameters yielded 39,288,278,400 DOF per energy group. All calculations were 
performed on the Jaguar XT5 computer at the OLCF. 

Table 1 compares the different solvers for the two-group version of the PWR-900 benchmark. The 
17,424 spatial domains used for the standard Gauss-Seidel (GS) solver represent the maximum number 
of cores that could be effectively used for this problem. To use more computing resource the multilevel 
decomposition is required. These results show that the multigroup Krylov solvers are very effective, and 
they allow an efficient multilevel decomposition. However, because this is a coarse energy benchmark, 
we cannot make dramatic conclusions about the performance of the solvers on real problems of interest. 

 



 
 (a) (b) 

Figure 5. (a) PWR-900 17 × 17 pin fuel assembly. The pins have been homogenized into 
45 unique materials in each assembly. All assembly enrichments have the same 1/4 symmetry 
pattern. (b) 2-D radial cut of the reactor core. The low-enrichment assemblies are light blue, the 
medium enrichment assemblies are red/blue, and the high-enrichment assemblies are 
yellow/orange. 
 

 

Table 1. Solver comparisons for 2 group version of the PWR-900 benchmark 
problem. In each case the eigenvalue was converged to 1-3. Each problem had 
78,576,556,800 DOF. 

Solver Blocks Sets Domains 
Solver Time  

(min) 
PI/GS + TTG  17,424 1 17,424 11.00 
PI/GMRES  10,200 2 20,400 3.03 
Arnoldi/GMRES  10,200 2 20,400 2.05 

 
To show the validity of this approach for fully resolved reactor problems, we must investigate the 

performance of the parallel algorithm and solvers on problems with more groups. We have run the same 
PWR-900 problem with 44 groups, resulting in 1,728,684,249,600 DOF. Four versions of the problem 
are executed: power iteration (PI) with GS plus GMRES, PI with GMRES, Arnoldi with GS plus 
GMRES, and Arnoldi with GMRES. With the multigroup GS plus GMRES option, multilevel 
partitioning is performed only over the upscattering region of the scattering matrix. For this option, the 
lower-triangular downscatter region is replicated on each set. With the multigroup GMRES option, 
multilevel partitioning is performed over the whole scattering matrix, regardless of its structure. Each 
problem was run with 10,200 blocks and 11 sets, resulting in 112,200 domains. 

The results of these runs are given in terms of the weak-scaling parallel efficiency that is defined as  

ߝ  = ఛ౨౛౜ఛౌ ቀ ୈ୓୊ౌୈ୓୊౨౛౜ቁ  ,    ߬ = ݐ × ௣ܰ . (26) 

Here, ݐ is the wall-clock time and ௣ܰ is the number of processors (cores). The “ref” subscript denotes a 
reference problem run, and the “P” subscript refers to the target problem. Weak-scaling curves for the 
four multilevel solvers are shown using the PI/GS plus TTG problem as the reference in Figure 6. These 
results show that (1) the multilevel parallel decomposition allows scaling up to ܱ(100ܭ) cores and 
(2) the solvers combined with the multilevel parallel decomposition are generally more efficient than 



standard PI/GS-based schemes (even with acceleration). In particular, the Arnoldi eigenvalue solver is 
significantly more efficient than PI, and we expect this efficiency difference to become larger as tighter 
eigenvalue tolerances are required. In general, reactor design calculations require eigenvalue tolerances 
of approximately 1 × 10–5, 2 orders of magnitude tighter than our current 1 × 10–3 tolerance. Early test 
problems indicate that the efficiency of the Arnoldi solver approaches 6 times the efficiency of PI at 
these tighter tolerances. 
 

 
 (a) (b) 

Figure 6. (a) Weak scaling efficiencies for the 44-group version of the PWR-900 benchmark, and 
(b) peak machine efficiencies on Jaguar XT5. 
 

7. Conclusions 
We have implemented a new suite of eigenvalue and multigroup solvers in the Denovo radiation 
transport code that utilize a multilevel energy decomposition. Using these solvers in concert with the 
multilevel parallel decomposition allows Denovo to scale to ܱ(100ܭ) processors on leadership-class 
hardware. Original space-angle parallel methods were fundamentally limited in how much machine 
resource could be used for a given problem size. The multilevel decomposition overcomes this barrier 
and should allow scaling to exascale-level platforms and beyond. 
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