
Hybrid parallelism for volume rendering on large, multi-core
systems

Mark Howison, E. Wes Bethel, Hank Childs
Visualization Group, Lawrence Berkeley National Laboratory

Email: {mhowison,ewbethel,hchilds}@lbl.gov

Abstract. This work studies the performance and scalability characteristics of “hybrid” parallel
programming and execution as applied to raycasting volume rendering—a staple visualization
algorithm—on a large, multi-core platform. Historically, the Message Passing Interface (MPI)
has become the de-facto standard for parallel programming and execution on modern parallel
systems. As the computing industry trends towards multi-core processors, with four- and
six-core chips common today and 128-core chips coming soon, we wish to better understand
how algorithmic and parallel programming choices impact performance and scalability on large,
distributed-memory multi-core systems. Our findings indicate that the hybrid-parallel
implementation, at levels of concurrency ranging from 1,728 to 216,000, performs better, uses a
smaller absolute memory footprint, and consumes less communication bandwidth than the
traditional, MPI-only implementation.

1. Introduction
It is well accepted that the future of parallel computing
involves chips that are comprised of many (smaller)
cores. With this trend towards more cores on a chip,
many in the HPC community have expressed concern
that parallel programming languages, models, and
execution frameworks that have worked well to-date on
single-core massively parallel systems may “face
diminishing returns” as the number of computing cores
on a chip increase [1]. In this context, we explore the
performance and scalability of a common visualization
algorithm—raycasting volume rendering—implemented
with different parallel programming models and run on a
large supercomputer comprised of six-core chips. We
compare a traditional implementation based on
message-passing against a “hybrid” parallel
implementation, which uses a blend of traditional
message-passing (inter-chip) and shared-memory
(intra-chip) parallelism (Figure 1).

Over the years, there has been a consistent and
well-documented concern that the overall runtime of

Figure 1. This 46082 image of a
combustion simulation result was
rendered by our MPI+pthreads
implementation running on 216,000 cores
of the JaguarPF supercomputer.

large-data visualization algorithms is dominated by I/O costs (e.g., [2,3]). During our experiments, we
observed results consistent with previous work: there is a significant cost associated with scientific data
I/O. In this study, however, we focus exclusively on the performance and scalability of the ray casting
volume rendering algorithm, not on parallel I/O performance. This approach is valid for many
visualization use cases, such as creating multiple images from a single dataset that fits entirely within the
memory footprint of a large system, or creating one or more images of data that is already resident in
memory, as in the case of in-situ visualization.

Our findings show that there is indeed opportunity for performance gains when using
hybrid-parallelism for raycasting volume rendering across a wide range of concurrency levels. The
hybrid-parallel implementation runs faster, requires less memory, and for our particular algorithm and
set of implementation choices, consumes less communication bandwidth than the traditional, MPI-only
implementation.

2. Implementation
Our implementation of a parallel raycasting volume renderer draws on a large body of prior research
(see [4] for a detailed overview). The primary contributions of our work is a comparison of the
performance and resource requirements between hybrid- and traditional-parallel programming models.

From a high level view, our parallel volume renderer distributes a source data volume S across n
parallel MPI PEs. Each PE reads in 1

𝑛
 of S, performs raycasting volume rendering on this data

subdomain to produce a set of image fragments, then participates in a compositing stage in which
fragments are exchanged and combined into a final image. The completed image is gathered to PE 0 for
display or I/O to storage. Our distributed memory parallel implementation is written in C++ and C and
makes calls to MPI. The portions of the implementation that are shared-memory parallel are written
using a combination of C++ and C and either POSIX threads or OpenMP, so that we are comparing two
hybrid implementations, MPI+pthreads and MPI+OpenMP.

Our raycasting volume rendering code implements Levoy’s method [5]: we compute the intersection
of a ray with the data block, and then compute the color at a fixed step size along the ray through the
volume. All such colors along the ray are integrated front-to-back using the “over” operator. Output
from our algorithm consists of image fragments that contain an x, y pixel location, R, G, B, α color
information, and a z-coordinate. The z-coordinate is the location in eye coordinates where the ray
penetrates the block of data. In the MPI-only case, this serial implementation is invoked on each of the
PEs. Each operates on its own disjoint block of data. As we are processing structured rectilinear grids,
all data subdomains are spatially disjoint, so we can safely use the ray’s entry point into the data block as
the z-coordinate for sorting during the later composition step.

In the MPI-hybrid case, the raycasting volume renderer on each MPI PE is a shared-memory parallel
implementation consisting of T threads all executing concurrently to perform the raycasting on a single
block of data. As in [6], we use an image-space partitioning: each thread is responsible for raycasting a
portion of the image. Our image-space partitioning is interleaved, where the image is divided into many
small tiles that are distributed amongst the threads. Through a process of manual experimentation, we
determined that an image tile size of 32 × 32 pixels produced consistently better performance than other
tile sizes for a variety of source volume sizes on the six-core AMD Opteron processor. We also found
that a dynamic work assignment of tiles to threads minimized load imbalance.

Compositing begins by partitioning the pixels of the final image amongst the PEs. Next, an all-to-all
communication step exchanges each fragment from the PE where it was generated in the raycasting
phase to the PE that owns the region of the image in which the fragment lies. This exchange is
implemented using an MPI_Alltoallv call, which provides the same functionality as direct sends and
receives, but bundles the messages into fewer point-to-point exchanges for greater efficiency. Each PE
then performs the final compositing for each pixel in its region of the image using the “over” operator,
and the final image is gathered on PE 0.

Peterka et al. [3] reported scaling difficulties for compositing when using more than 8,000 PEs. They
solved this problem by reducing the number of PEs receiving fragments to be no more than 2,000. We

emulated this approach, again limiting the number of PEs receiving fragments, although we
experimented with values higher than 2,000.

In the hybrid implementations, only one thread per socket participates in the compositing phase. That
thread gathers fragments from all other threads in the same socket, packs them into a single buffer, and
transmits them to other compositing PEs. This approach results in fewer messages than if all threads in
the hybrid parallel implementation were to send messages to all other threads on all other CPUs. Our
aim here is to better understand the opportunities for improving performance in the hybrid-parallel
implementation. The overall effect of this design choice is an improvement in communication
characteristics, as indicated in Section 3.3.

3. Results
We conducted a strong scaling study where we rendered a 46082 image from a 46083 dataset (roughly
97.8 billion cells) at concurrency levels from 1,728-way parallel to 216,000-way parallel. Our test
system, JaguarPF, is a Cray XT5 located at Oak Ridge National Laboratory. Each of its 18,688 nodes
has two sockets, and each socket has a six-core 2.6GHz AMD Opteron processor, for a total of
224,256 compute cores. With 16GB per node (8GB per socket), the system has 292TB of aggregate
memory and 1.3GB per core.

On JaguarPF, a minimum of 1,728 cores is required to accommodate this particular problem size. In
the hybrid case, we shared a data block among six threads and used one sixth as many MPI PEs.
Although we could have shared a data block among as many as twelve threads on each dual-socket
six-core node, we chose not to because sharing data across sockets results in non-uniform memory
access. Based on preliminary tests, we estimated this penalty to be around 5 or 10% of the raycasting
time. Therefore, we used six threads running on the cores of a single six-core processor. Because the
time to render is view-dependent, we executed each raycasting phase ten times over a selection of ten
different camera locations. The raycasting times we report are an average over all locations.

In the compositing phase, we tested five different ratios of total PEs to compositing PEs. We
restricted the compositing experiment to only two views (the first and last) because it was too costly to
run a complete battery of all view and ratio permutations. Since the runtime of each trial can vary due to
contention for JaguarPF’s interconnection fabric with other users, we ran the compositing phase ten
times for both views. We report mean and minimum times over this set of twenty trials. Minimum times
most accurately represent what the system is capable of under optimal, contention-free conditions, while
mean times characterize the variability of the trials.

Starting with a 5123 dataset of combustion simulation results,*

Because the compute nodes on an XT5 system have no physical disk for swap, and hence no virtual
memory, exceeding the physical amount of memory causes program termination. Our total memory
footprint was four times the number of bytes in the entire dataset: one for the dataset itself, and the other
three for the gradient data, which we computed by central difference and used in shading calculations.
Although each node has 16GB of memory, we could reliably allocate only 10.4GB for the data block
and gradient field at 1,728-way concurrency because of overhead from the operating system and MPI
runtime. We chose concurrencies that are cubic numbers to allow for a clean decomposition of the entire
volume into cubic blocks per MPI PE.

 we used trilinear interpolation to
upscale it to arbitrary sizes in memory. We scaled equally in all three dimensions to maintain a cubic
volume. Our goal was to choose a problem size that came close to filling all available memory. Although
upscaling may distort the results for a data-dependent algorithm, the only data dependency during
raycasting is early ray termination. However, we found that for our particular dataset and transfer
function, there was always at least one data block for which no early terminations occurred. Moreover,
the cost of the extra conditional statement inside the ray integration loop to test for early termination
added a 5% overhead. Therefore, we ran our study with early ray termination turned off, and we believe
that upscaling the dataset does not effect our results.

* Sample data courtesy J. Bell and M. Day, Center for Computational Sciences and Engineering, LBNL.

3.1. Memory Usage
Because MPI-hybrid uses fewer MPI PEs, it incurs less memory overhead from the MPI runtime
environment and from program-specific data structures that are allocated per PE. We measured the
memory footprint of the program directly after calling MPI_Init using the VmRSS, or “resident set
size,” value from the /proc/self/status interface. Memory usage was sampled only from MPI PEs
0 through 6, but those values agreed within 1–2%. At 216,000 cores, the per-PE runtime overhead of
MPI-only was 176MB, more than twice the 82MB required by MPI-hybrid. The MPI-only per-node
(2,106MB) and aggregate (37,023MB) memory usage was another factor of six larger than MPI-hybrid
(165MB per-node, 2,892MB aggregate) because it uses 6× as many PEs as MPI-hybrid. Thus, MPI-only
used nearly 12× as much memory per-node and in-aggregate than MPI-hybrid to initialize the MPI
runtime at 216,000-way concurrency.

Two layers of ghost data are required in our raycasting phase: the first layer for trilinear interpolation
of sampled values, and the second layer for computing the gradient field using central differences
(gradients are not precomputed for our dataset). Because the MPI-hybrid approach uses fewer, larger
blocks in its decomposition, it requires less exchange and storage of ghost data by roughly 40% across
all concurrencies.

3.2. Raycasting
Our raycasting phase scales nearly linearly because it involves no inter-processor communication (see
Figure 2). Each MPI PE obtains its data block, then launches either one (MPI-only) or six (MPI-hybrid)
raycasting threads. Working independently, each thread tests for ray-triangle intersections along the data
block's bounding box and, in the case of a hit, integrates the ray by sampling data values at a fixed
interval along the ray, applying a transfer function to the values, and aggregating the resulting color and
opacity in a fragment for that ray’s image position. For these runs and timings, we use trilinear
interpolation for data sampling along the ray as well as a Phong-style shader. The final raycasting time is
essentially the runtime of the thread that takes the most integration steps, and this behavior is entirely
dependent on the view.

Figure 2. The speedups (referenced to 1,728 cores) for both the raycasting phase and the total
render time (raycasting and compositing).

Overall, we have achieved linear scaling up to 216,000 for the raycasting phase with MPI-only (see

Figure 2). MPI-hybrid exhibits different scaling behavior because it has a different decomposition
geometry: MPI-only has a perfectly cubic decomposition, while MPI-hybrid aggregates 1 × 2 × 3 cubic
blocks into rectangular blocks that are longest in the z-direction. The interaction of the decomposition

geometry and the camera direction determine the maximum number of ray integration steps, which is
the limiting factor for the raycasting time. At lower concurrencies, this interaction benefits MPI-hybrid,
which outperforms MPI-only by as much as 11%. At higher concurrencies the trend flips, and MPI-only
outperforms MPI-hybrid by 10%. We expect that if we were able to run on an eight-core system with a
2 × 2 × 2 aggregation factor for MPI-hybrid, both implementations would scale identically. We also note
that at 216,000 cores, raycasting is less than 20% of the total runtime (see Figure 4), and MPI-hybrid is
over 50% faster because of gains in the compositing phase that we describe next.

3.3. Compositing
We observe that with increasing concurrency, the MPI-hybrid compositing times are systematically

better than the MPI-only implementation. The primary cost of compositing is the MPI_Alltoallv call that
moves each fragment from the PE where it originated during raycasting to the compositing PE that owns
the region of image space where the fragment lies. Because MPI-hybrid aggregates these fragments in
the memory shared by six threads, it uses on average about 6× fewer messages than MPI-only (see
Figure 3). In addition, MPI-hybrid exchanges less fragment data because its larger data blocks allow for
more compositing to take place during ray integration.

Figure 3. The number of messages and total data sent during the compositing fragment exchange.

Overall, the best compositing time at 216,000 cores for MPI-hybrid (0.35s, 4500 compositors) is
67% less than for MPI-only (1.06s, 6750 compositors) because the MPI-hybrid approach results in
fewer and smaller messages than the MPI-only implementation. Furthermore, at this scale compositing
time dominates rendering time, which is roughly 0.2s for both MPI-only and MPI-hybrid. Thus, the total
render time is 55% faster for MPI-hybrid (0.56s versus 1.25s). The advantage of MPI-hybrid over
MPI-only also becomes greater as the number of cores increases (see Figure 4).

Figure 4. In terms of total render time, MPI-hybrid outperforms MPI-only at every concurrency
level, with performance gains improving at higher concurrency.

4. Conclusion and Future Work
The multi-core era offers new opportunities and challenges for parallel applications. This study has
shown that hybrid parallelism offers performance improvements and better resource utilization for
raycasting volume rendering on a large, distributed-memory supercomputer comprised of multi-core
CPUs. The advantages we observe for hybrid parallelism are reduced memory footprint, reduced MPI
overhead, and reduced communication traffic. These advantages are likely to become more pronounced
in the future as the number of cores per CPU increases while per-core memory size and bandwidth
decrease.

We found that at high concurrency, fragment exchange during the compositing phase is the most
expensive operation. Our compositing algorithm relies entirely on the implementation of the
MPI_Alltoallv call in the Cray MPI library. Our finding that using a subset of compositing PEs reduces
communication overhead agrees with what Peterka et al. [3] found for the MPI implementation on an
IBM BG/P system, suggesting that both libraries use similar implementations and optimizations of
MPI_Alltoallv. A separate paper by Peterka et al. [7] introduces a new compositing algorithm,
“Radix-k,” that shows good scaling up to 16,000-way concurrency. This approach, which is compatible
with our hybrid parallel system, may lead to even faster compositing times. Studying their combined
performance, especially at concurrencies in the hundreds of thousands, is an avenue for future work.

Acknowledgment
This work was supported by the Director, Office of Science, Office and Advanced Scientific Computing
Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 through the
Scientific Discovery through Advanced Computing (SciDAC) program's Visualization and Analytics
Center for Enabling Technologies (VACET). This research used resources of the National Center for
Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. Additionally, preliminary
results for this work were collected using resources of the National Energy Research Scientific
Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231.

References
[1] Asanovic, K., et al. (2006). The landscape of parallel computing research: A view from Berkeley.

Tech. Rep. UCB/EECS-2006-183, EECS Department, University of California, Berkeley.
[2] Kniss, J., McCormick, P., McPherson, A., Ahrens, J., Painter, J., Keahey, A., and Hansen, C.

(2001). Interactive texture-based volume rendering for large data sets. IEEE Computer Graphics
and Applications, 21, 52–61.

[3] Peterka, T., Yu, H., Ross, R., Ma, K.-L., and Latham, R. (2009). End-to-end study of parallel
volume rendering on the IBM Blue Gene/P. ICPP '09: Proceedings of the 2009 International
Conference on Parallel Processing, Washington, D.C., USA, pp. 566–573, IEEE Computer
Society.

[4] Howison, M., Bethel, E. W., and Childs, H. (2010). MPI-hybrid parallelism for volume rendering
on large, multi-core systems. Eurographics Symposium on Parallel Graphics and Visualization
(EGPGV), Norrköping, Sweden, May, lBNL-3297E.

[5] Levoy, M. (1988). Display of surfaces from volume data. IEEE Computer Graphics and
Applications, 8, 29–37.

[6] Nieh, J. and Levoy, M. (1992). Volume rendering on scalable shared-memory MIMD
architectures. Proceedings of the 1992 Workshop on Volume Visualization, October, pp. 17–24,
ACM SIGGRAPH.

[7] Peterka, T., Goodell, D., Ross, R., Shen, H.-W., and Thakur, R. (2009). A configurable algorithm
for parallel image-compositing applications. SC '09: Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, New York, NY, USA, pp. 1–10,
ACM.

