
Performance of communication patterns for extreme-scale
analysis and visualization

T Peterka,1 W Kendall,2 D Goodell,1 B Nouanesengsey,3 H-W Shen,3 J Huang,2
K Moreland,4 R Thakur,1 and R B Ross1
1Mathematics and Computer Science Division, Argonne National Laboratory, Argonne,
IL 60439, USA

2Department of Electrical Engineering and Computer Science, University of Tennessee
at Knoxville, Knoxville, TN 37996, USA

3Department of Computer Science and Engineering, The Ohio State University,
Columbus, OH 43210, USA

4Sandia National Laboratories, Albuquerque, NM 87185, USA

Email: tpeterka@mcs.anl.gov

Abstract. Efficient data movement is essential for extreme-scale parallel visualization and
analysis algorithms. In this research, we benchmark and optimize the performance of collective
and point-to-point communication patterns for data-parallel visualization of scalar and vector
data. Two such communication patterns are global reduction and local nearest-neighbor
communication. We implement scalable algorithms at tens of thousands of processes, in some
cases to the full scale of leadership computing facilities, and benchmark performance using
large-scale scientific data.

1. Introduction
Through funding initiatives such as SciDAC, the U.S. Department of Energy's Office of Science has
embarked on a historic path in computational and computer science. At tera- and petascale today, and
certainly at exascale in the future, data analysis and visualization will continue to be pivotal components
in the success of this endeavor [1]. Efficient data movement, whether storage access or network
communication, is essential for the success of parallel analysis algorithms at extreme scale.

This paper summarizes the performance of two network communication patterns for parallel analysis
and visualization: global reduction and local nearest-neighbor communication. Global reduction is
collective communication whereby all processes participate in merging their results into one solution.
Local nearest-neighbor is an assortment of sparse collective neighborhoods, and each process
communicates with only those processes in its immediate vicinity. Case studies of the scalability of the
Radix-k algorithm for parallel image compositing and of parallel particle tracing are presented as
examples of each communication model. The two case studies represent high impact long-standing
scalability challenges with the potential to impede progress in extreme-scale visualization; one is a
critical bottleneck in rendering while the other is a first step in many flow visualization and feature
extraction algorithms.

2. Algorithms and Data Structures for Communication in Visualization
Sort-last parallel visualization algorithms are data-parallel approaches that partition the data space
among processes and execute the same visualization task concurrently on each process. Upon
completion of this step, each process owns an output image that must be merged with all the other
processes' images to form a single result. Image composition is the name given to this stage, and it relies
on an efficient global reduction communication pattern. Previously, direct-send [2] and binary swap [3]
were the accepted best practices for performing image composition, although recently Radix-k [4,5] has
demonstrated significant performance gains on a variety of machine architectures.

Radix-k enables the amount of
communication concurrency to be tuned
to the architecture by factoring the
number of processes into a number of
rounds and a number of communicating
partners in a group in each round (see
Figure 1). By configuring the k-values
(group size in each round) appropriately,
the available network bisection
bandwidth can be approached without
exceeding it and generating contention
for messages. With Radix-k, direct-send
and binary swap simply become two of
the numerous valid configurations
possible for a given number of
processes. Radix-k also overlaps the
communication of messages with the
reduction computation as much as
possible, further improving
performance.

Some analysis and visualization
applications require a local message
exchange among neighbors instead of
global reduction. This is the case when
particles are advected by a flow field
for computing streamlines or pathlines.
As each particle crosses block
boundaries, it is relayed to the process
that owns the neighboring block. Or, as
Pugmire et al. [6] demonstrated, a new
data block can be loaded by the same
process as an alternative to handing the
particle to another process. In our
algorithm, the message sizes involved
in communicating particles are smaller
than the data movement required to
load another data block from storage.
Thus, we use a static block distribution
and focus our efforts instead on
efficient communication.

Figure 2 shows the basic block
structure used in our nearest-neighbor
communication. The dataset consists of

Figure 1. Illustration of the Radix-k parallel image
compositing algorithm on 12 processes. Any factorization
of the total number of processes is a valid configuration; in
this example, two rounds of [4,3] are used. Groups of 4 are
formed in the first round (left), and groups of 3 are formed
in the second round (right). Within each group, a local
direct-send pattern is executed.

Figure 2. The data structures for nearest-neighbor
communication of 4D particles are overlapping
neighborhoods of 81 4D blocks. Each block consists of
voxels and has extents in the (𝑥,𝑦, 𝑧, 𝑡) dimensions. In the
example above, eight time-steps are grouped into either
one, two, or four blocks in the time dimension.

multiple time-steps, one per file, containing 3D velocity vectors; and because we accommodate
time-varying datasets and unsteady flow fields, all particles and blocks are 4D entities. A neighborhood
consists of a central block surrounded by 80 other neighbors, for a total neighborhood size of 81 blocks.
That is, the neighborhood is a 3 × 3 × 3 × 3 region comprising the central block and any other block
adjacent in space and time. These neighborhoods are partially overlapping; hence, the neighbor relation
is reflexive and symmetric but not transitive. A particle is transferred from one block to another within a
neighborhood whenever one or more particle coordinates (𝑥,𝑦, 𝑧, 𝑡) exceed the block boundary in any
of the four dimensions.

3. Performance Results
We tested Radix-k image compositing and parallel particle tracing on some of the largest
supercomputers in the world and present selected results below. The Argonne Leadership Computing
Facility has the IBM Blue Gene/P (BG/P) Intrepid system while the Oak Ridge National Center for
Computational Sciences maintains the Cray XT5 Jaguar system. Intrepid has 160 K cores while Jaguar
has 219 K cores; Jaguar is currently the fastest supercomputer in the world according to the June 2010
Top 500 listing, while Intrepid is currently ranked ninth.

Figure 3 shows the results of testing Radix-k in a volume rendering application applied to a
core-collapse supernova dataset on both Intrepid and Jaguar. In this research, bounding box and
run-length encoding optimizations were implemented in Radix-k, and the compositing algorithm was
inserted in our parallel volume rendering code [7].

Figure 3. When optimizations such as bounding boxes and run-length encoding are implemented in
Radix-k for the volume rendering of core-collapse supernovae (left), the compositing time (center)
scales on both Intrepid and Jaguar out to 32 K processes, plotted in log-log scale. Speedup of Radix-k
over binary swap is shown at the right.

Bounding box and run-length encoding optimizations permitted the use of higher k-values than
would otherwise be possible. The combination of accelerations with higher k-values allowed us to scale
to 32,768 processes, as shown in the center panel of Figure 3. Tests were conducted at three zoom levels
with the camera facing down the z-axis. The image size for these tests was 64 megapixels, a wall-size
image with the same resolution as 32 HD TVs. At 32,768 processes, such an image can be composited in
0.08 seconds, or at 12.5 frames per second. The right panel of Figure 3 shows the speedup of Radix-k
over binary swap in the same application, with identical optimizations applied. Up to five times faster
performance resulted in some instances, and at least three times shorter compositing time was reported
in most cases on Intrepid. On Jaguar, Radix-k is approximately 1.5 times faster than binary swap.

Figure 4 shows initial results of our parallel particle tracing algorithm on a dataset of the mixing
behavior of warm and cold water in a confined region. The data have been resampled from their original
topology onto a regular grid. Particle tracing consists of a number of iterations; one iteration involves
numerically integrating the particle along the flow field until it reaches the boundary of its current block
and then passing the particle to the neighboring block. Our tests ran for 10 iterations; the left panel of
Figure 4 shows the result for a small number of particles, 400 in total. A single time-step of data is used
here to model static flow.

Figure 4. The scalability of parallel nearest-neighbor communication for particle tracing of thermal
hydraulics data is plotted in log-log scale. The left panel shows 400 particles tracing streamlines in this
flow field. The center panel shows time for 8 K particles and a data size of 5123. Five curves are shown
for different partitioning strategies: one block per process and round-robin partitioning with 2, 4, 8, and
16 blocks per process. In the right panel, 128 K particles are traced in three data sizes: 5123 (134 million
cells), 10243 (1 billion cells), and 20483 (8 billion cells). End-to-end scaling efficiency includes I/O
(reading the vector dataset from storage and writing the output particle traces).

The center panel shows strong scaling up to 4,096 processes. The data size is 5123, and this time
8,192 total particles are used. Currently a simple round-robin distribution scheme is used to balance the
computational load among processes; a process contains one or more data blocks distributed in the
volume. The center panel shows distributions ranging from one block per process to 16 blocks per
process. In almost all cases, the performance improves as the number of blocks per process increases;
load is more likely to be distributed evenly and the overhead of managing multiple blocks remains small.
Obviously, there is a limit to the effectiveness of a process having many small blocks: the cost of
aggregating their particles into one message increases; moreover, the ratio of their surface area to
volume grows, resulting in more communicating and less computing.

We recognize that round-robin distribution does not always produce acceptable load balancing. In
our case, randomly seeding a dense set of particles throughout the domain works in our favor, but this
need not be the case, as demonstrated by Pugmire et al. [6]. We are investigating load-balanced
partitioning under less ideal conditions.

Continuing with this example, the right panel shows the scalability of larger data size and number of
particles. Here, 131,072 seeds are randomly placed in the domain. Three sizes of the same thermal
hydraulics data are tested: 5123, 10243, and 20483; the larger sizes were generated by upsampling the
original size. As in the center panel, all of the data points represent end-to-end time including I/O.
Tracing 131,072 particles in the smallest data size can be accomplished in 13 seconds; the medium data
size in 19 seconds, and the largest data size in about 1-1/2 minutes (approximately 50% of this time is
I/O). End-to-end scaling efficiency is also plotted for the three curves; in order from smallest to largest
data size, these efficiencies are 63%, 24%, and 19%, respectively.

4. Summary
Data movement is a critical part of analysis operations at scale. Any nontrivial parallel decomposition of
analysis tasks requires communication among processes that can amount to a significant portion of the
total analysis run time. We investigated and optimized communication motifs for two commonly used
operations: global reduction and nearest-neighbor communication.

Image composition in data-parallel rendering is the motivation for exploring new global reduction
algorithms. With Radix-k, we reduced compositing time by up to a factor of five compared to binary
swap and composed wall-size images at nearly interactive rates. We are currently implementing the
Radix-k algorithm in the IceT compositing library [8], which will enable its use in production
visualization tools.

Parallel particle tracing motivated our work in nearest-neighbor communication. We successfully
scaled our parallel particle tracing code to 16,384 processes on data sizes up to 8 billion grid points, or
96 GB. We are actively researching load-balancing and data-partitioning algorithms, benchmarking
time-varying results, and testing our code on adaptive mesh grids as well.

Acknowledgments
We thank John Blondin, Tony Mezzacappa, Paul Fischer, and Aleks Obabko, the Argonne Leadership
Computing Facility, and the National Center for Computational Sciences at Oak Ridge National
Laboratory. This work was supported by the Office of Advanced Scientific Computing Research, Office
of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357. Work is also supported
by DOE with agreement No. DE-FC02-06ER25777.

References
[1] Dongarra J. 2009. International exascale software project roadmap, draft report, Tech. rep.

www.exascale.org.
[2] Hsu W M. 1993. Proc. 1993 Parallel Rendering Symposium, Segmented Ray Casting for Data

Parallel Volume Rendering (San Jose, CA) pp. 7–14.
[3] Ma K L, Painter J S, Hansen C D, and Krogh M F. 1994. IEEE Computer Graphics and

Applications, Parallel Volume Rendering Using Binary-Swap Compositing 14 pp. 59–68.
[4] Peterka T, Goodell D, Ross R, Shen H W, and Thakur R. 2009. SC’09: Proceedings of the

Conference on High Performance Computing Networking, Storage, and Analysis, A Configurable
Algorithm for Parallel Image-Compositing Applications (New York, NY, USA: ACM) pp. 1–10.

[5] Kendall W, Peterka T, Huang J, Shen H W, and Ross R. 2010. Proceedings of Eurographics
Symposium on Parallel Graphics and Visualization EG PGV'10, Accelerating and Benchmarking
Radix-k Image Compositing at Large Scale (Norrkoping, Sweden).

[6] Pugmire D, Childs H, Garth C, Ahern S, and Weber G H. 2009. SC’09: Proceedings of the
Conference on High Performance Computing Networking, Storage, and Analysis, Scalable
Computation of Streamlines on Very Large Datasets (New York, NY, USA: ACM) pp. 1–12.

[7] Peterka T, Yu H, Ross R, Ma K L, and Latham R. 2009. ICPP 09: Proceedings of the 2009
International Conference on Parallel Processing, End-to-End Study of Parallel Volume
Rendering on the IBM Blue Gene/P (Washington, DC, USA: IEEE) pp. 566–573.

[8] Moreland K, Wylie B, and Pavlakos C. 2001. PVG’01: Proceedings of the IEEE 2001 Symposium
on Parallel and Large-Data Visualization and Graphics, Sort-last Parallel Rendering for Viewing
Extremely Large Data Sets on Tile Displays (Piscataway, NJ, USA: IEEE Press) pp. 85–9.2

