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Abstract. Efficient data movement is essential for extreme-scale parallel visualization and 
analysis algorithms. In this research, we benchmark and optimize the performance of collective 
and point-to-point communication patterns for data-parallel visualization of scalar and vector 
data. Two such communication patterns are global reduction and local nearest-neighbor 
communication. We implement scalable algorithms at tens of thousands of processes, in some 
cases to the full scale of leadership computing facilities, and benchmark performance using 
large-scale scientific data. 

1. Introduction 
Through funding initiatives such as SciDAC, the U.S. Department of Energy's Office of Science has 
embarked on a historic path in computational and computer science. At tera- and petascale today, and 
certainly at exascale in the future, data analysis and visualization will continue to be pivotal components 
in the success of this endeavor [1]. Efficient data movement, whether storage access or network 
communication, is essential for the success of parallel analysis algorithms at extreme scale. 

This paper summarizes the performance of two network communication patterns for parallel analysis 
and visualization: global reduction and local nearest-neighbor communication. Global reduction is 
collective communication whereby all processes participate in merging their results into one solution. 
Local nearest-neighbor is an assortment of sparse collective neighborhoods, and each process 
communicates with only those processes in its immediate vicinity. Case studies of the scalability of the 
Radix-k algorithm for parallel image compositing and of parallel particle tracing are presented as 
examples of each communication model. The two case studies represent high impact long-standing 
scalability challenges with the potential to impede progress in extreme-scale visualization; one is a 
critical bottleneck in rendering while the other is a first step in many flow visualization and feature 
extraction algorithms. 



2. Algorithms and Data Structures for Communication in Visualization 
Sort-last parallel visualization algorithms are data-parallel approaches that partition the data space 
among processes and execute the same visualization task concurrently on each process. Upon 
completion of this step, each process owns an output image that must be merged with all the other 
processes' images to form a single result. Image composition is the name given to this stage, and it relies 
on an efficient global reduction communication pattern. Previously, direct-send [2] and binary swap [3] 
were the accepted best practices for performing image composition, although recently Radix-k [4,5] has 
demonstrated significant performance gains on a variety of machine architectures. 

Radix-k enables the amount of 
communication concurrency to be tuned 
to the architecture by factoring the 
number of processes into a number of 
rounds and a number of communicating 
partners in a group in each round (see 
Figure 1). By configuring the k-values 
(group size in each round) appropriately, 
the available network bisection 
bandwidth can be approached without 
exceeding it and generating contention 
for messages. With Radix-k, direct-send 
and binary swap simply become two of 
the numerous valid configurations 
possible for a given number of 
processes. Radix-k also overlaps the 
communication of messages with the 
reduction computation as much as 
possible, further improving 
performance. 

Some analysis and visualization 
applications require a local message 
exchange among neighbors instead of 
global reduction. This is the case when 
particles are advected by a flow field 
for computing streamlines or pathlines. 
As each particle crosses block 
boundaries, it is relayed to the process 
that owns the neighboring block. Or, as 
Pugmire et al. [6] demonstrated, a new 
data block can be loaded by the same 
process as an alternative to handing the 
particle to another process. In our 
algorithm, the message sizes involved 
in communicating particles are smaller 
than the data movement required to 
load another data block from storage. 
Thus, we use a static block distribution 
and focus our efforts instead on 
efficient communication. 

Figure 2 shows the basic block 
structure used in our nearest-neighbor 
communication. The dataset consists of 

 
Figure 1. Illustration of the Radix-k parallel image 
compositing algorithm on 12 processes. Any factorization 
of the total number of processes is a valid configuration; in 
this example, two rounds of [4,3] are used. Groups of 4 are 
formed in the first round (left), and groups of 3 are formed 
in the second round (right). Within each group, a local 
direct-send pattern is executed. 
 

 
Figure 2. The data structures for nearest-neighbor 
communication of 4D particles are overlapping 
neighborhoods of 81 4D blocks. Each block consists of 
voxels and has extents in the (𝑥,𝑦, 𝑧, 𝑡) dimensions. In the 
example above, eight time-steps are grouped into either 
one, two, or four blocks in the time dimension. 



multiple time-steps, one per file, containing 3D velocity vectors; and because we accommodate 
time-varying datasets and unsteady flow fields, all particles and blocks are 4D entities. A neighborhood 
consists of a central block surrounded by 80 other neighbors, for a total neighborhood size of 81 blocks. 
That is, the neighborhood is a 3 × 3 × 3 × 3 region comprising the central block and any other block 
adjacent in space and time. These neighborhoods are partially overlapping; hence, the neighbor relation 
is reflexive and symmetric but not transitive. A particle is transferred from one block to another within a 
neighborhood whenever one or more particle coordinates (𝑥,𝑦, 𝑧, 𝑡) exceed the block boundary in any 
of the four dimensions. 

3. Performance Results 
We tested Radix-k image compositing and parallel particle tracing on some of the largest 
supercomputers in the world and present selected results below. The Argonne Leadership Computing 
Facility has the IBM Blue Gene/P (BG/P) Intrepid system while the Oak Ridge National Center for 
Computational Sciences maintains the Cray XT5 Jaguar system. Intrepid has 160 K cores while Jaguar 
has 219 K cores; Jaguar is currently the fastest supercomputer in the world according to the June 2010 
Top 500 listing, while Intrepid is currently ranked ninth. 

Figure 3 shows the results of testing Radix-k in a volume rendering application applied to a 
core-collapse supernova dataset on both Intrepid and Jaguar. In this research, bounding box and 
run-length encoding optimizations were implemented in Radix-k, and the compositing algorithm was 
inserted in our parallel volume rendering code [7]. 

 

 
Figure 3. When optimizations such as bounding boxes and run-length encoding are implemented in 
Radix-k for the volume rendering of core-collapse supernovae (left), the compositing time (center) 
scales on both Intrepid and Jaguar out to 32 K processes, plotted in log-log scale. Speedup of Radix-k 
over binary swap is shown at the right. 
 

Bounding box and run-length encoding optimizations permitted the use of higher k-values than 
would otherwise be possible. The combination of accelerations with higher k-values allowed us to scale 
to 32,768 processes, as shown in the center panel of Figure 3. Tests were conducted at three zoom levels 
with the camera facing down the z-axis. The image size for these tests was 64 megapixels, a wall-size 
image with the same resolution as 32 HD TVs. At 32,768 processes, such an image can be composited in 
0.08 seconds, or at 12.5 frames per second. The right panel of Figure 3 shows the speedup of Radix-k 
over binary swap in the same application, with identical optimizations applied. Up to five times faster 
performance resulted in some instances, and at least three times shorter compositing time was reported 
in most cases on Intrepid. On Jaguar, Radix-k is approximately 1.5 times faster than binary swap. 
  



Figure 4 shows initial results of our parallel particle tracing algorithm on a dataset of the mixing 
behavior of warm and cold water in a confined region. The data have been resampled from their original 
topology onto a regular grid. Particle tracing consists of a number of iterations; one iteration involves 
numerically integrating the particle along the flow field until it reaches the boundary of its current block 
and then passing the particle to the neighboring block. Our tests ran for 10 iterations; the left panel of 
Figure 4 shows the result for a small number of particles, 400 in total. A single time-step of data is used 
here to model static flow. 

 

 
Figure 4. The scalability of parallel nearest-neighbor communication for particle tracing of thermal 
hydraulics data is plotted in log-log scale. The left panel shows 400 particles tracing streamlines in this 
flow field. The center panel shows time for 8 K particles and a data size of 5123. Five curves are shown 
for different partitioning strategies: one block per process and round-robin partitioning with 2, 4, 8, and 
16 blocks per process. In the right panel, 128 K particles are traced in three data sizes: 5123 (134 million 
cells), 10243 (1 billion cells), and 20483 (8 billion cells). End-to-end scaling efficiency includes I/O 
(reading the vector dataset from storage and writing the output particle traces). 
 

The center panel shows strong scaling up to 4,096 processes. The data size is 5123, and this time 
8,192 total particles are used. Currently a simple round-robin distribution scheme is used to balance the 
computational load among processes; a process contains one or more data blocks distributed in the 
volume. The center panel shows distributions ranging from one block per process to 16 blocks per 
process. In almost all cases, the performance improves as the number of blocks per process increases; 
load is more likely to be distributed evenly and the overhead of managing multiple blocks remains small. 
Obviously, there is a limit to the effectiveness of a process having many small blocks: the cost of 
aggregating their particles into one message increases; moreover, the ratio of their surface area to 
volume grows, resulting in more communicating and less computing. 

We recognize that round-robin distribution does not always produce acceptable load balancing. In 
our case, randomly seeding a dense set of particles throughout the domain works in our favor, but this 
need not be the case, as demonstrated by Pugmire et al. [6]. We are investigating load-balanced 
partitioning under less ideal conditions. 

Continuing with this example, the right panel shows the scalability of larger data size and number of 
particles. Here, 131,072 seeds are randomly placed in the domain. Three sizes of the same thermal 
hydraulics data are tested: 5123, 10243, and 20483; the larger sizes were generated by upsampling the 
original size. As in the center panel, all of the data points represent end-to-end time including I/O. 
Tracing 131,072 particles in the smallest data size can be accomplished in 13 seconds; the medium data 
size in 19 seconds, and the largest data size in about 1-1/2 minutes (approximately 50% of this time is 
I/O). End-to-end scaling efficiency is also plotted for the three curves; in order from smallest to largest 
data size, these efficiencies are 63%, 24%, and 19%, respectively. 



4. Summary 
Data movement is a critical part of analysis operations at scale. Any nontrivial parallel decomposition of 
analysis tasks requires communication among processes that can amount to a significant portion of the 
total analysis run time. We investigated and optimized communication motifs for two commonly used 
operations: global reduction and nearest-neighbor communication. 

Image composition in data-parallel rendering is the motivation for exploring new global reduction 
algorithms. With Radix-k, we reduced compositing time by up to a factor of five compared to binary 
swap and composed wall-size images at nearly interactive rates. We are currently implementing the 
Radix-k algorithm in the IceT compositing library [8], which will enable its use in production 
visualization tools. 

Parallel particle tracing motivated our work in nearest-neighbor communication. We successfully 
scaled our parallel particle tracing code to 16,384 processes on data sizes up to 8 billion grid points, or 
96 GB. We are actively researching load-balancing and data-partitioning algorithms, benchmarking 
time-varying results, and testing our code on adaptive mesh grids as well. 
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