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An Exa times a Nano Is a Gigal

o A future system circa (2017?) may be
capable of 108 flops

e The energy required for an operation today Is
O(nJ) i.e. 10 joules

— I remind you that a joule a second is a watt

e Then 10° joules/s is a Gigawatt A supercomputer J

center of the future
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Current trends are high-parallelism lower
power but fundamentals constrain power
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Energy roadmap and projections

courtesy Peter Kogge
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UHPC Cabinent Goal

UHPC Module Energy Efficiency Goal
Exa Fully Scaled Projection

CMOS Technology

UHPC Cabinent Energy Efficiency Goal
Exa Simplistically Scaled Projection
————— Top System Trend Line
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Trend Lines on Prior Chart

e Red “Top System Trend Line”
— Fitted through data for top system from Top500

e Green “CMOS Technology” computed from CV?
— Where C assumed to scale as feature size
— And V scaled as V44 for high power logic

— And then “scaled” to allow comparison with “Top” trend
e “Centered” at 1988

e “Exa .. Projections” use projection data made during
Exascale Technology Study for “business as usual
high performance microprocessor-driven
architectures”

— “Simplistic” = Highly Optimistic scenario
— “Fully Scaled” = Highly Pessimistic scenario
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FPU Energy per Flop

from DARPA Exascale Hardware Report

Energy/flop (pJ)
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—m— High Performance —&— Low Operating Power  —A— Mainstream DRAM Core
O— Exascale projections —x— Exascale Assumption
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Customization Can Save Energy

Microprocessors

General Purpose Various DSP
MiCroprocessors Boadt (e

{ 802.11a
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Bandwidth: Operands/flop
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Moving Data Remains Fundamental

courtesy Peter Kogge
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» Both bandwidth and energy tapers drop off strongly once going “off-core”
» Bandwidth tapers declines gracefully thereafter
» Energy taper declines sharply going off chip
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Going forward energy budget is allabout
data motion

Registes, k)

Latency Gap

We can’t afford to move an unused bit further than need be
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e |diom: A common memory access pattern

Idioms are patterns of data access

e PIR Goal: Identify common memory access patterns in source code

e Static analysis to recognize patterns in the source code, identify
loops as idioms.

e Built within GCC — portable to most systems

e An idiom is pattern used often in applications (e.g. loops) 8
common idioms:

Stream (Ai] = A[i] + B[i])
Transpose (Ali][] = B
Gather (A[i] = B[index([i]])
Scatter (Alindex[i]] = B[i])
Random Access (A[i] = B[rand(seed)])
Reduction (s =s + BJi])

Stencil (A[i] = Afi-1] + A[i+1])

Gather reduction (s =s + B[index(i)] )
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Application
source code

PIR identified as

Loop 1 Gather/Scatter
L 5 PIR identified as
00p Stream
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Communication ldioms
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LECFD Paint-to-Foint Communication (bytes)
u

Prooe e

Superlll Point-io-Point Communeaion [ines)

Przcssmr

Why not turn
off the part of
the network
you don’t
need?
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Meta-ldioms (Dwarfs, Motifs)

e Molecular Dynamics

— Anton, Grape, all-to-all, hardware for force
calculations

e Signal processing
— DSP, SIMD, specialized prefetching and transpose

e Graph algorithms, decision class (Chess)
— Data flow, memory synch, PIM

e Inverse problems, Data Mining
— Robust memory and I/O

e Dense linear algebra

— Fast FPUS
SDSC PMaC
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Not everything has to be at the same time

e Voltage scaling processors

e “Wires are cheap turning them on is
expensive” — Shekhar Borkhar

e 10x10 architecture of Andrew Chien
e In HPC we run the same thing over and over
again

— (and so why not learn the data access patterns
and benefit from them?)
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Integrated Wetware/Software/Hardware

Programming Model

Express parameterized
data partitions, and
alternatives

Compiler

Translate parameterized layouts
Multiple versions

Socket optimizations (mem., cores)
Cross-processor communication
Optimization decision tree

~ Visualization of Execution
& Feedback

Autotuning
Experiments Engine

Evaluate alternative mappings

Collect search space statistics,

Il

Run-Time & Operating System
Dynamic communication
optimization (parameterized)
Thread scheduling
Optimization decision tree

Provide feedback

Companion
Computations
Monitor data collection
Inform user of anomalies
rack back to code

Pata Collection™a

agt

& Analysis
Select Perf. Counters
Detect anomalies

Toggle data collection
Store statistics

1T

Hardware Performance Counters

Collect processor, memory hierarchy, interconnect measurements
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Basic piece of a performance/power model

HPC Target System

HPC
Application

which a machine can carry out

CriEAHeH SR HINS

fundamental operations to be

carriequt Qi Brm apiracaion

PC system —
hine Profile

Measured or
projected via
simple benchmarks
on 1-2 nodes of the
target system

Performance of
Application on

Collected via
trace tools on
base system

ORISR Y RIS

map Application Signatures to Machine Profiles

produce performance prediction
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MultiMAPS

Memory Bandwidth (Xeon)
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Adding Power Measurement Harness

e |Insert shunt resistor
between the power supply
and CPU or DIMM

e Measure AC power
consumption of node

e Collect data with DAQ (NI
USB-6255)

e Calculate Power
Consumption
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Power Profile of Xeon Dual Quad-core
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A Kiviat diagram (“radar plot”) iIs a useful
way to visualize performance responses

L1 Cache

Think of a “bulge” as a
steep performance
response gradient

in that dimension

Off-Node BW, L2 Cache

Off-Node Lat

On-Node B

Main Memory
On-Node Lat

Example: modeled ops/watt response of WRF to 2x
improvement in each machine dimension
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Memory profiles as Kiviat diagrams of

systems out to 2012 (anonymous)
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Very signifieant differences in System 10
Main memory and L3 cache bandwidths System 11
System 12

L3
Assuming the “better” systems are more energy hungry are they worth it?
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Exascale in 20177

Data courtesy Jack Dongarra

Total Performance [Tflop /s]

How about Exascale in 20137

There is not anything to prevent a nation-state from spending
1 GW on 1 Exaflop if they deem it in their national interest
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