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Scientific data doubles every year

— caused by successive generations
of inexpensive sensors +
exponentially faster computing

2000
1990 1995

10980 1985

Changes the nature of scientific computing 10 7 BCCDs mGlass
Cuts across disciplines (eScience)
It becomes increasingly harder to extract knowledge

20% of the world’s servers go into huge data centers by the “Big 5”
— Google, Microsoft, Yahoo, Amazon, eBay




Collecting Data

Very extended distribution of data sets:
data on all scales!

Most datasets are small, and manually maintained
(Excel spreadsheets)

Total amount of data dominated by the other end
(large multi-TB archive facilities)

Most bytes today are collected
via electronic sensors
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Data is everywhere, never will be at a single location
Architectures increasingly CPU-heavy, 10-poor
Data-intensive scalable architectures needed

Need randomized, incremental algorithms
— Bestresult in 1 min, 1 hour, 1 day, 1 week

Most scientific data analysis done on small to midsize
BeoWulf clusters, from faculty startup

Universities hitting the “power wall”
Not scalable, not maintainable...



Gray's Laws of Data Engineeri
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Jim Gray:

Scientific computing is revolving around data
Need scale-out solution for analysis "
Take the analysis to the datal

Start with “20 queries”

Go from “working to working”

DISC: Data Intensive Scientific Computing
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Building Scientific Databases

10 years ago we set out to explore how to cope with
the data explosion (with Jim Gray)

Started in astronomy, with the Sloan Digital Sky
Survey

Expanded into other areas, while exploring what can
be transferred

During this time data sets grew from 100GB to 100TB

Interactions with every step of the scientific process

— Data collection, data cleaning, data archiving, data
organization, data publishing, mirroring, data distribution,
data curation...



Reference Applicatons

Some key projects at JHU

SDSS: 100TB total, 35TB in DB, in use for 8 years

NVO : ~5TB, few billion rows, in use for 4 years
PanStarrs: 80TB by 2011, 300+ TB by 2012

Immersive Turbulence: 30TB now, 100TB by Dec 2010

Sensor Networks: 200M measurements now, forming
complex relationships

Key Questions:

 What are the reasonable tradeoffs for DISC?
« How do we build a ‘scalable’ architecture?
 How do we interact with petabytes of data?



Sloan Digital Sky Survey

I
. ] The University of Chicago
“The Cosmic Genome Project” Princeton University
) The Johns Hopkins University
Two Surveys in one The University of Washington
Ph . in 5 band New Mexico State University
o otometric Survey in anas Fermi National Accelerator Laboratory
— Spectroscopic redshift survey US Naval Observatory
) . The Japanese Participation Group
Data Is pUblIC The Institute for Advanced Study
Max Planck Inst, Heidelberg
— 40 TB of raw data _
Sloan Foundation, NSF, DOE, NASA

— 5 TB processed catalogs
— 2.5 Terapixels of images

Started in 1992, finishing in 2008

Database and spectrograph
built at JHU (SkyServer)
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Public Use of the SkyServer

1
.
.

o4
R S S
Lo

+ 1 + 1
R e
e T e e

* Prototype in 21st Century data access_ o
B 774 m|”|on Web h| : o %, Sloan Digital Sky Survey [/ SkyServe
— 930,000 distinct u:
vs 10,000 astrono

— Delivered 50,000
of lectures to high

— Delivered 100B ro
— Everything is a po

 GalaxyZoo
— 40 million visual g
— Enormous publicit
— 100,000 people pal
— Now truly amazing original discovery by a schoolteacher from Holland
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e Understand the nature of turbulence

— Consecutive snapshots of a
1,0243 simulation of turbulence:
now 30 Terabytes

— Treat it as an experiment, observe
the database!

— Throw test particles (sensors) in from
your laptop, immerse into the simulation,
like in the movie Twister

35000
30000
25000
20000
15000
10000
5000

 New paradigm for analyzing
HPC simulations!

with C. Meneveau, S. Chen (Mech. E), G. Eyink (Applied Math), R. Burns (CS)
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 “Move operations as close as possible to the data”:
Most elementary operations in analysis of CFD data (constrained on locality):
« Differentiation (high-order finite-differencing)
* Interpolation (Lagrange polynomial interpolation)

* “Storage schema must facilitate rapid searches”
» Most basic search: given x,y,z,t position, find field variables (u,v,w,p).
» Define elementary data-cube (optimize size relative to typical queries)
and arrange along Z curve and indexing using oct-tree:

ji= 4 5 6 7T
i=0 16 "r'/[] 1
i=1 IEZQ 3
=2 9
i=3 1
1= 3 36 37 48 49 52 53
i= 5/38 39 50 51 B4 55
i =26 40 41 44 45 56 57 60 61
i=1T 42 43 46 47 58 59 62 63




Sample Applicatior

Experimentalists testing PIV-based pressure-gradient measurement
(X. Liu & Katz, 61 APS-DFD meeting, November 2008)

Measuring velocity gradient using a new set of 3 invariants
Luethi, Holzner & Tsinober,
J. Fluid Mechanics 641, pp. 497-507 (2010)

Expanding the Q—R space to three dimensions
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Lagrangian time correlation in turbulence
Yu & Meneveau
Phys. Rev. Lett. 104, 084502 (2010)
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The Milky Way Laboratory

 Pending NSF Proposal to use cosmology simulations
as an immersive laboratory for general users

— Use Via Lactea-Il (20TB) as prototype, then Silver River
(500TB+) as production (15M CPU hours)

— Output 10K+ hi-rez snapshots (200x of previous)

e E.g. users insert test particles (dwarf galaxies) into
system and follow trajectories Iin

precomputed simulation et RS

— Realistic “streams” from tidal
disruption

— Users interact remotely with
0.5PB in ‘real time’




500 Universes Projec

e Gadget2/tree with 32032 particles, 6402 grid
— 500 realizations of a 1(Gpc/h)3 box
— Cosmological parameters following Millennium XL (WMAP5)
— In progress...

e Outputs:
— 100 snapshots of (x,v) and density grid
— 1000 snapshots of large scale Fourier modes (1283)
— Total storage ~100TB

e Science
— Detailed topology estimators (walls, filaments, halos)
— Conditional non-linear growth of large scale modes
— NL evolution of baryon bumps in redshift space
... public facility ...
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Huge amounts of data, aggregates needed

— But also need to keep raw data

— Need for parallelism

Use patterns enormously benefit from indexing
— Rapidly extract small subsets of large data sets

— Geospatial everywhere

— Compute aggregates

— Fast sequential read performance is critical!!!

— But, in the end everything goes.... search for the unknown!!
Data will never be in one place

— Newest (and biggest) data are live, changing daily

Fits DB quite well, but no need for transactions

Design pattern: class libraries wrapped in SQL UDF
— Take analysis to the data — run it all inside the DB!!
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How long does the data growth continue?

 High end always linear
 EXxponential comes from technology + economics
< rapidly changing generations
— like CCD'’s replacing plates, and become ever cheaper

How many new generations of instruments do we
have left?

Are there new growth areas emerging?
Software is becoming a new kind instrument
— Value added federated data sets

— Simulations
— Hierarchical data replication
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Gene Amdahl (1965): Laws for a balanced system

I. Parallelism: max speedup is S/(S+P)

Il. One bit of IO/sec per instruction/sec (BW)

lii. One byte of memory per one instruction/sec (MEM)

Modern multi-core systems move farther
away from Amdahl’'s Laws
(Bell, Gray and Szalay 2006)
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Typical Amdahl Numbers
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System CPU GIPS RAM diskiO Amdahl
count [GHz] [GB] [MEB/s] RAM 10

Beollulf 100 300 200 2000 0.67 0.08
Desklop 2 G = 120 0.67 0.2
Cloud VM 1 3 4 30 1.33 0.08
ey L1 L9HE 12Ul Ta6EUl TEYUL I L. UUA
SC2 2090 5000 c260 4700 1.65 0.008
GraylWWulf 416 1107




Amdahl Numbers for D:

1.E+00

Data generation

1.E-01

Data Analysis

1E-02 [

1.E-03

Amdahl number

1.E-04




The Data Sizes Invi
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Disk space, disk space, disk space!!!!

Current problems not on Google scale yet:
— 10-30TB easy, 100TB doable, 300TB really hard
— For detailed analysis we need to park data for several mo

Sequential 10 bandwidth
— If not sequential for large data set, we cannot do it

How do can move 100TB within a University?

— 1Gbps 10 days
— 10 Gbps 1 day (but need to share backbone)
— 100 lbs box few hours

From outside?
— Dedicated 10Gbps or FedEx
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Stu Feldman (Google):
Extreme computing is about tradeoffs!

Ordered priorities for data-intensive science:

Total storage  (low redundancy)

Cost (total cost vs price of raw disks)

Sequential IO  (total throughput vs. all disks, locally attached)
Fast stream processing (GPUs inside server, next to disks)
Low power (slow normal CPUs, lots of disks/mobo)

abhowphE

The order will be different in a few years...and scalability
will appear as well
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Cost of a Petabyte
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COST OF A PETABYTE

From backblaze.com

RAW DRIVES I$31 ,000

f#.

BACKBLAZE I$1 17,000

@ -5326,000
NetApp

amazon®

$2,806,000

* Amazon 53 Storage over three years [minus electricity, co-location and administration).




@aywulf

Distributed SQLServer cluster/cloud
— 50 servers, 1.1PB disk, 500 CPU

— Connected with 20 Gbit/sec Infiniband
— Linked to 1500 core compute cluster

— Extremely high speed seq I/O (75GB/s)
— Balanced: Amdahl number >0.5

Dedicated to eScience, provide
public access through services

Funded by Moore Foundation,
Microsoft Research and Pan-STARRS

Now similar machines in Potsdam and in Munich
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36-node Amdabhl cluster using 1200W total
Zotac Atom/ION motherboards
— 4GB of memory, N330 dual core Atom, 16 GPU cores

Aggregate disk space 43.6TB
— 63 x120GB SSD = 7.77TB
— 27/x1TB Samsung F1 =27.0TB
— 18x.5TB Samsung M1= 9.0 TB

Blazing I/O Performance: 18GB/s
Amdahl number = 1!
Cost is less than $30K

Using the GPUs for data mining:

— 6.4B multidimensional regressions
In 5 minutes over 1.2TB
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The Impact of GPUs

We need to reconsider the N logN only approach

Once we can run 100K threads, maybe running SIMD
N2 on smaller partitions is also acceptable

Potential impact on genomics huge

— Seguence matching using parallel brute force vs dynamic
programming?

Recent JHU effort on integrating

CUDA with SQL Server, using

SQL UDF

Galaxy correlation functions:
400 trillion galaxy pairs!
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Proposal to NSF MRI to build a new ‘instrument’ to look at data
102 servers for $1M + about $200K switches+racks
Two-tier: performance (P) and storage (S)

Large (5PB) + cheap + fast (460GBps), but ...
..a special purpose instrument

1P 1S 90P 12S Full

servers 1 1 90 12 102

rack units 4 12 360 144 504
capacity 24 252 2160 | 3024 | 5184 B
price 85| 22.8 766 274 | 1040 $K
power 1 1.9 94 23 116 kKW
GPU 3 0 270 0 270 TF
seq 10 4.6 3.8 414 45 459 | GBps
netwk bw 10 20 900 240 | 1140 | Gbps
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Discipline data [TB]
Astrophysics 930
HEP/Material Sci. 394
CFD 425
Biolnformatics 414
Environmental 660
Total 2823

o [ N w B~ ol (o} ~ [0}
! ! ! ! ! ! !

10

20

40 80
data set size [TB]

160

19 projects total, data lifetimes between 3 mo and 3 yrs

320

640
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Large data sets are here, solutions are not
— 100TB is the current practical limit

National Infrastructure does not match power law

No real data-intensive computing facilities available
— Some are becoming a “little less CPU heavy”

Even HPC projects choking on IO
Cloud hosting currently very expensive
Cloud computing tradeoffs different from science needs

Scientists are “cheap”, also pushing the limit
— We are still building our own...
— We will see campus level aggregation
— May become the gateways to future cloud hubs
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Sociology:

— Data collection in ever larger collaborations (VO)

— Analysis decoupled, off archived data by smaller groups
— Data sets cross over to multi-PB

Some form of a scalable Cloud solution inevitable
— Who will operate it, what business model, what scale?
— How does the on/off ramp work?

— Science needs different tradeoffs than eCommerce

Scientific data will never be fully co-located

— Geographic origin tied to experimental facilities

— Streaming algorithms, data pipes for distributed workflows
— “Data diffusion™?

— Containernet (Church, Hamilton, Greenberg 2010)
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Science community starving for storage and 10

— Data-intensive computations as close to data as possible
Real multi-PB solutions are needed NOW!

— We have to build it ourselves

Current architectures cannot scale much further
— Need to get off the curve leading to power wall
— Multicores/GPGPUs + SSDs are a disruptive change!

Need an objective metrics for DISC systems

— Amdahl number appears to be good match to apps
Future in low-power, fault-tolerant architectures
— We propose scaled-out “Amdahl Data Clouds”

A new, Fourth Paradigm of science is emerging
— Many common patterns across all scientific disciplines
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