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Turbulence 1s Hard

Sir Horace Lamb (1932), in a lecture to the Brit.

Assoc. Adv. Science:

“I am an old man now, and when | die and go to heaven there are
two matters on which | hope for enlightenment. One is quantum
electrodynamics, and the other is the turbulent motion of fluids.
And about the former | am rather optimistic.”

Richard Feynman referred to turbulence as:

“the most important unsolved problem in
classical physics”

Turbulence remains an unsolved problem,
despite > 100 years of effort (+ many new tools)

But, I'm optimistic!



Turbulence 1s Everywhere

~20% world energy
consumption in
transportation

® Turbulence governs
mixing and transport in
many fluid flows.

= Unreliable turbulence
models often dominate
uncertainty in flow |
predictions

® Limits abllity to
manipulate (engineer)
flow properties

®m Yet: there is a reliable
turbulence model




Navier-Stokes Turbulence

® Navier-Stokes equations are an excellent model
of turbulence

e 25 years of experience with DNS & experiments

e Scaling of turbulence and molecular phenomena
imply:
» Smallest turbulence scales are molecularly large
» Newtonian viscosity not invalidated by shear rates

m Turbulence problem is a practical one

Equivalent DNS

domains in turbulent 2003, 4 Gpoint
boundary layer




DNS as a Numerical Laboratory

In fluild mechanics, we are blessed with reliable
governing equations

Simulations can serve as surrogate experiments
“Measurements” not possible in the lab
Control of initial and boundary conditions
Unphysical experiments

Completeness of data particularly attractive

Down-sides:

Limitec

cContro

Re
of initial and boundary conditions

Possibility of numerical errors



DNS and Combustion

Many combustion systems involve turbulence

Turbulence has an order-1 effect on combustion
processes e.g.:

Controls large scale mixing of reactants
Can cause local extinction

DNS an excellent tool for discovery in turbulent
combustion

Probe the “action” at scale of molecular mixing
DNS for turbulent combustion only a “little harder”

Convection/diffusion of species

Chemical kinetics (possibly stiff)

Heat release



Near-Wall Turbulence:
A DNS Success Story

Before DNS After DNS (KMM 1987)

Streaks, Sweeps, Vortices, Jets, Shear layers
Ejections

The near-wall viscous layer is essentially solved!



The “Turbulence Problem”

® Predict the effects of high Re turbulence
o Affects performance of many devices

® Know how to manipulate a high Re turbulent flow
for some purpose, e.g.:

e Increase mixing in a combustor
e Decrease drag on a vehicle
= At high Reynolds number,

turbulence is a complicated
multi-scale phenomenon

e ./In~Re”*
e Re=UL/v

Kaneda et al, J. of Turbulence 2006



Isotropic Turbulence

Kaneda et al, J. of
Turbulence 2006




Wall-Bounded Turbulence

Most turbulent flows of technological interest are
wall-bounded

Turbulence governs drag, heat transfer, mass
transfer and delays separation

Wall-bounded turbulence 1s multi-scale, with a
thin layer near the wall

Inner viscous layer thickness ~ h/Re
Outer layer thickness ~ h

Matched asymptotic representation, with overlap
layer -- this is the “log-layer”
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Understanding the Log-Layer

We need to understand the dynamics of the high
Re log layer

Critical to modeling of wall-bounded turbulence,
especially for LES

Mediates transport to the wall

Determines how the outer turbulence affects the
viscous layer

Interacts with large roughness

Need to manipulate to modify wall layer (e.g.
reduce drag)



Log Lag/er Analysis
Channel at Ret=2000 (Jimenez & Hoyas 2008)
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Log Layer Spectra at different y
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Both large and small A spectrum of v scale with y
Large A in u and v scale better with h

Results in logarithmic variance
Largest scales of u more complicated



u Spectrum as Function of y
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m Channel: location of spectral peak ~y in log layer

®m Boundary Layer: scaling with y not apparent
e Boundary layers appear to be different
e Differences persists with Reynolds number in BL



“Solving” the Log Layer

Current scaling theories for log-layer inadequate
No dynamic theories

New simulations will be needed:
Channel at Ret=5000
15,400x1600x11,500 grid, 200 PFlop Hours
Boundary layer at Re6=6000
16,400x711x4096, 70M BGP Hours

Currently running on Intrepid

High Reynolds number DNS will be enabling
BUT:



Need to Do the Science

DNS at high enough Re will enable new scientific
iInquiry in many fluid flow problems

Extensive post-processing (statistics, graphics etc.)
New simulations (e.g. unrealizable experiments)
Over 5-10 years by many researchers

Moving into an era when turbulence research is
data-rich

Our theories will easily be tested

Impact on wide range of issues in which turbulence
plays a role

There Is reason to be optimistic!



“Solving” the Buffer Layer

‘ Understanding the Buffer Layer‘

- 1990-2001

"Vortices'

Kim, Moin, Moser, Spalart,

Kline, Robinson, Jiménez, Hamilton,
Waleffe, Aubry, Holmes, Lumley, Stone,
Schoppa,Hussain, Pinelli, del Alamo, Flores, Busse,
Ehrestein, Itano, Koch, Kawahara, Kida, Nagata, Simens, Toh,...



DNS and Turbulence Science

Once phenomena can be reliably simulated, they
are likely to be understood in ~10 years

DNS of many systems at realistic Re will be
possible at petascale and then exascale

e.g. Wall-bounded, Chemically reacting
Will be numerical and algorithmic challenges
Many questions in turbulence will be “solved”

The potential impact on design, optimization and
control of fluid systems is enormous.

These promise to be exciting times In turbulence
research!



Uncertainty Quantification and the Philosophy of Science

Essay towards Solving a Problem

Thomas Bayes 1702=1761 1 i1 the Doctrine of Chances, 1764
David Hume 17111776 | A Treatise on Human Nature, 1739
Hans Reichenbach | 1891-1953 | The Rise of Scientific Philosophy, 1951
Sir Karl Popper 1902-1994 | The Logic of Scientific Discovery, 1954

Colin Howson
and Peter Urbach

Scientific Reasoning — The Bayesian
Approach, 2006

R. D. Moser uUQ for Atmospheric RVs
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David Hume (Skepticism)

The Problem of Induction
The philosophical question of whether
inductive reasoning leads to knowledge

Induction presupposes that a sequence of
events will occur in the future as it always
has in the past

R. D. Moser uUQ for Atmospheric RVs 2/22



Sir Karl Popper

»

»

R. D. Moser uUQ for Atmospheric RVs

The Principle of Falsification

A hypothesis can be accepted as

a legitimate scientific theory
if it can possibly be refuted by
observational evidence

A theory can never be validated; it can
only be invalidated by (contradictory)
experimental evidence.

Corroboration of a theory (survival of
many attempts to falsify) does not
mean a theory is likely to be true.

3/22



Philosophical Foundations

The Imperfect Paths to Knowledge

THE UNIVERSE
of

PHYSICAL

REALITIES

Observational
Errors

Modeling
Errors

Discretization
Errors

THEORY /
MATHEMATICAL
MODELS

OBSERVATIONS

COMPUTATIONAL
MODELS

VALIDATION

VERIFICATION

R. D. Moser uUQ for Atmospheric RVs 4/22



Philosophical Foundations

The Path to Truth ...

“If error is corrected
whenever it is recognized as such,
the path to error
is the path of truth.”

Hans Reichenbach
The Rise of Scientific Philosophy, 1951.

R. D. Moser uUQ for Atmospheric RVs



A Comprehensive Approach to Uncertainty Quantification

Three primary processes in computational UQ
e (Calibration — infer model parameters from data (Bayesian Inference)
e Validation — build confidence by evaluating consistency with experiments

e Prediction — predict a Quantity of Interest (Qol) and it's uncertainty

Validation is the central activity and challenge
¢ Involves calibration and prediction (uncertainty propagation)
¢ Drives model development and experimental measurement
e Fundamental to scientific inquiry

¢ |s more challenging in the presence of uncertainty

Bayes: Probability represents lack of knowledge (uncertainty)

R. D. Moser uUQ for Atmospheric RVs 6/22



The Bayesian Approach

P(BIA) P(Jf(z)A)

P(A|B) = P(]f(;)B)

p(Bla) = ADID) (Alfil])) (B)
Let A — data, B — parameters

Then P(A|B) = the model

Thomas Bayes

likelihood of data - prior knowledge
probability of data

posterior knowledge =

“Theories have to be judged in terms of their probabilities in light of the evidence”.

R. D. Moser UQ for Atmospheric RVs 7122




Incompressible Turbulent Flow Example

Motivation

Explore turbulence model validation in a simpler, but relevant, flow regime
Explore uncertainties from model inadequacy

Calibration/Validation Process Overview

© Qol: Wall shear stress (7,) in favorable pressure gradient (FPG)
turbulent boundary layer (TBL) flow.

® Prediction tolerance: Need Qol prediction to 5%

® Modeling: RANS + Spalart-Allmaras turbulence model + multiple
uncertainty models

@ Prior: SA common choice for TBL with mild pressure gradient; plenty
of literature

©® Experimental data: Three flat plate TBL experiments with varying
pressure gradient conditions

R. D. Moser UQ for Atmospheric RVs 8/22



Turbulence Example

Example: Models of Interest

Physical Model
¢ Reynolds-averaged Navier-Stokes (RANS) equations
» Boussinesq approximation: —uju/; = 2v;5;; — 5k
o Spalart-Allmaras turbulence model: vy = v, fo1

ij
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Structural Uncertainty Models
RANS-SA is known to be imperfect. Evaluate three uncertainty models.
e M;: SA model is perfect — no uncertainty
e Ms: Independent, Gaussian uncertainty in observables
yi = 0:fi(0), n~ N(1,0°1)
e Mjs: Correlated, Gaussian uncertainty in velocity field
U(x;0; ) = A(x; a)use(x,0), A~ N(1,k(x,x';a))

R. D. Moser UQ for Atmospheric RVs
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Example: Parameter Posterior PDFs

¢,1 Marginal Posterior x Marginal Posterior
4.5 T —Ml 140 —Ml
4 ' —M, 120 B —M,
—M B M
35 ! M H 3
! Prior 100 : - Prior
3 H Nominal Nominal
w25 B —~ 80
S 2 : g
15 :
: 40
1
O 7 5 9 10 %2 025 03 035 04 045 05 055 05
Observations

o Uncertainty representation can affect parameter posterior
o r very well determined by the data, but is different from nominal

R. D. Moser uUQ for Atmospheric RVs 10/22



Example: Plausibility and Validation

™,
— M M; | N | P(M;|d, M)
— M, | 7] 1.6x10°10
My | 8 | 1.4x 10719
g M | 9 ~1
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P(M;|d, M) = &

Bayes’ Theorem

d[Mi, M)P(M;|M)

P(d|M)

e Bayesian process enables relative evaluation of models

e M3 dramatically preferred by the data

o Evaluations of Qol can invalidate M/, (the physical model) & M,

e Says nothing about the validity of M3

R. D. Moser uUQ for Atmospheric RVs
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Algorithmic Challenges

e Sampling most common probabilistic algorithm
» Monte Carlo sampling (MCS) )for forward propagation
» Markov Chain Monte Carlo (MCMC) for inverse problems (Bayesian
inference)
» Converge slowly like 1/v/N
e Stochastic collocation and the like
» Rapid convergence for smooth distributions
» Curse of dimensionality
o Use structure of forward problem to accelerate sampling

» Derivative of outputs wrt inputs
» Example: Stochastic Newton for Bayesian inference

R. D. Moser uUQ for Atmospheric RVs 12/22



Deterministic vs. Stochastic Newton

Deterministic Newton:

e Given a cost function — log ()

oz =xp — H 'Vy(—logn)

¢ Minimizes local quadratic approximation at each step
Stochastic Newton:

e Given a probability density 7(x)

oz =xp — H 'Vy(—logm) + N (0, H)

e Samples local Gaussian approximation at each step

Unpreconditioned Langevin resembles steepest descent
o T = x — AtVy(—logn) + V2At N(0,1)

R. D. Moser uUQ for Atmospheric RVs 13/22



Algorithms

Rosenbrock illustration: Random walk

0.5 -

I I I I
-0.5 0o 0.5 1

T = T +N(0,1)
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Algorithms

Rosenbrock illustration: Hessian-preconditioned
Langevin

L L L L
-0.5 (o] 0.5 1

o =z, — H 'Vg(—logm) + N(0,H )

R. D. Moser uUQ for Atmospheric RVs



Algorithms

Stochastic Newton: Large-scale issues
At each MCMC step we need to

e solve systems of form Hv = b

e evaluate matvecs of form H Zw
Key idea: never form H; instead:

e recognize that H is sum of data misfit term, which is often equivalent to a
compact operator, and (the inverse of) a smoothing prior, which is often
equivalent to a differential operator:

F'T L F+T,"

noise

e develop fast algorithms for low rank (in particular, truncated spectral
decomposition) approximation of data misfit operator; often require constant
number of forward/adjoint solves, independent of problem size

e combine with Sherman-Morrison-Woodbury to invert/factor (requires
constant number of forward/adjoint solves)

e construct fast (multilevel) preconditioners for Hessian

R. D. Moser uUQ for Atmospheric RVs 16/22



Stochastic Newton Example

Convergence comparison for 65-layer seismic inversion

4 MPSREF Plots for 65D Chains
10 T T T
— DRAM
Traditional Langevin
Stochastic Newton

MPSRF (logscale)
=

10° L L L L
0 0.5 1 15 2 25
Number of Samples in Chain x10°

Multivariate potential scale reduction factor (MPSRF) convergence statistic
for 65-layer problem
unpreconditioned Langevin vs. stochastic Newton vs. Adaptive Metropolis

R. D. Moser uUQ for Atmospheric RVs 17/22



Rescaled 65-layer MPSRF convergence

MPSRF (logscale)

MPSREF statistic for 65-layer problem as function of wall clock time

MPSRF Plots for 65D Chains

10

10 T T T T
—— DRAM
Traditional Langevin
Stochastic Newton
10°F 4
10° ]
10° J
10" ,\\ 4
\
AN
N\
10° L e , | , ,
[ 1 2 3 4 5 6 7 8 9

Wallclock Computation Time (hours)

(dense implementation — not recommended!)

R. D. Moser uUQ for Atmospheric RVs
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Stochastic Newton Example

65-layer posterior

Posterior Parameter Distribution w/ Realizations

Parameter Value ()

0 01 0z 03 04 05 06 07 08 09 1
Depth

Density plot of marginal pdfs of posterior of elastic moduli of 65 layers
Blue curve is “truth” modulus used to synthesize observations
Other colors are draws from posterior

R. D. Moser uUQ for Atmospheric RVs



Stochastic Newton Example

MPSRF convergence for 1025-layer seismic inversion

60

50

40

20

MPSREF statistic for 1025-layer problem compared with 65-layer
(1025-layer results based on fast low-rank implementation)

Comparison of 65D and 1025D MPSRF
T T T

1025D MPSRF Values
65D MPSRF values

0

. . . . .
20 40 60 80 100
Number of Samples
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1025 layer posterior

1D Marginalized Coordinate Distributions

Parameter Value (1)

0 0.1 0.2 0.3 0.4 05 0.6 0.7 08 0.9 1
Depth

Density plot of marginal pdfs of posterior of elastic moduli of 1025 layers
Blue curve is “truth” modulus used to synthesize observations

R. D. Moser uUQ for Atmospheric RVs



Living with Uncertainty

¢ Treating uncertainty in simulation of large complex systems is
required

» Avoid fooling ourselves

» Used to make high-stakes decisions

» Major challenge in computational science
Methodological issues (modeling uncertainty, validation, etc.)
Algorithmic issues

» Curse of dimensionality

» Forward and inverse (inference) problems

» Need access to structure of input-output map (e.g. adjoints)
Computational issues

» Need many “forward” simulations O(10% to much more)

» Expensive forward problems =- extremely expensive UQ
Uncertainty quantification is particularly important in some problem
domains:

» Turbulence & turbulence modeling

» Combustion

R. D. Moser uUQ for Atmospheric RVs 22/22
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