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Motivation

 Skin diseases are extremely common
o More prevalent than obesity, hypertension and cancer

¥ Atopic dermatitis alone afßicts more than 15 million people in the US 
with treatment costs exceeding $1 billion/year

 Diseased skin is often characterized by a reduced barrier function 
and an altered lipid composition and organization 
o Mounting evidence that an impaired skin barrier does have a signiÞcant, even 

life threatening, affect on systemic health
¥ AD exhibits a strong concordance with asthma and hay fever

 50 - 75% of children with AD develop asthma

 A clear understanding of how the lipids of the skin assemble is 
needed
o A molecular basis for developing treatment strategies to restore barrier 

function in diseased skin  
o A molecular basis for breaching the barrier in a controlled manner to deliver 

drugs more effectively across the skin 
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Cross-section of skin

Close-up of Epidermis

http://encarta.msn.com/media_461516297/Structure_of_the_Skin.html;  Yardley HJ, Summerly R, Pharm. and Therapeutics, 13, 357 (1981).

Structure of Human Skin

 Stratum corneum known to control barrier function of skin
o Protects against foreign agents and disease entering the body

o Water exiting the body
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 Experimentally much is known about the nature of the SC
o Consists of dead, essentially impermeable, ßat, hexagonal, protein-enriched 

corneocytes
¥ Organized in aligned sheets 

about 10 - 40 cells deep

¥ Intercellular space 
surrounding corneocytes 
(~ 0.1 mm thick) is Þlled 
with highly organized 
lipid bilayers

 Control barrier 
function

S. Mitragotri et al, J Pharm Sci, 84, 697, 1996;  D. C. Swartzendruber et al, Cell Tissue Res, 279, 271, 1995

Structure of Stratum Corneum

Confocal micrograph

corneocyte

Transmission
electron micrograph

RuO4 fixed

lipid 
bilayers

corneocyte

corneocyte
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Stratum Corneum Lipids
6

Ceramides

Cholesterol

Fatty acids

Component Mole %

Ceramides 20

Cholesterol 40

Fatty acids 40

 Biologically unique lipid mixture
o No phospholipids

¥
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Cholesterol

Ceramide

Fatty acid

Aceylceramide

13 nm

6 nmSmall-angle X-ray diffraction 
observations

TEM observations
narrow broadbroad

lipid bilayers in TEM image

broad
narrow

Stratum Corneum Lipids

Kuempel D, et al., Biochimica Et. Biophy. Acta-Biom., 1372, 135 (1998); Hill JR, et al., Biochimica et. Biophy. Acta-Biom., 1616, 121 (2003)

Proposed organization of SC lipids
o Sandwich model

¥ Tri-layer model with ceramides in the hairpin conÞguration
 Repeat unit dimensions are consistent with experimental observations

o Stacked monolayer model  
¥ Tails of each ceramide are extended and inserted into adjacent layers resulting is a 

tri-layer molecular arrangement  
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Stratum Corneum Lipids
8

Ceramides

Cholesterol

Fatty acids

Component Mole %

Ceramides 20

Cholesterol 40

Fatty acids 40

 Biologically unique lipid mixture
o No phospholipids

o Lipids extracted from the SC exhibit the same phase behavior and 
lamellar structures outside the SC as observed in the SC

¥ i.e., SC lipids self-assemble

¥ Synthetic lipid mixtures containing as few as 6 synthetic CER, equimolar amounts of 
cholesterol and a 7 component mixture of FFA closely mimic the SC lipid organization 
to a large extent
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Optimization of CG Model

Perform and map atomistic MD simulations to CG 
level using center of mass to provide target radial 
distribution functions (RDF) for optimization
o CHARMM all-atom atomistic force Þeld 

¥ Simulations performed in LAMMPs and DL_POLY

o Validate the atomistic force Þeld via comparison to 
experiments

¥ Verify crystal structures (density)
¥ Melting points

Nielsen, S., C. Lopez, G. Srinivas, and M. Klein, Journal of Physics-Condensed Matter 16, R481-R512 (2004)
Ayton, G. S., S. Izvekov, W. G. Noid, and G. A. Voth, Computational Modeling of Membrane Bilayers, 60,181-225, (2008)
Bennun, SV; Hoopes, MI; Xing,CY;  Faller, R., Chemistry and Physics of Lipids, 159 59-66 (2009)
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o Experimental*

¥ Density (g/cc)
 1.027 

¥ Crystal lengths (•)
 a = 35.62 

 b = 4.9487 

 c = 9.406 
¥ Crystal angles

 α = 90.000o

 β = 90.000o

 γ = 90.447o

o Atomistic
¥ Density (g/cc)

 1.044 

¥ Crystal lengths (•)
 a =39.069  ± 0.223 
 b = 4.5682  ± 0.023
 c = 9.1605  ± 0.053

¥ Crystal angles
 α = 91.635o ± 0.577

 β = 87.512o ± 0.314

 γ = 87.416o ± 0.479

o Percentage difference
¥ Density

 1.66%

¥ Crystal lengths
 a =9.68%  ± 0.63 
 b = -7.69%  ± 0.47
 c = -2.61%  ± 0.56

¥ Crystal angles
 α = 1.82% ± 0.64

 β = -2.76% ± 0.35

 γ = -3.35% ± 0.53

 Comparison of crystal structures for C16:0

 

Validation of FFA Atomistic Model

*Moreno E, et al., Acta Crystal. Sect. C., 62, O129 (2006). 
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 Parameterized using Reith, PŸtz, and MŸller-
Plathe (RPM) method 
o Bonded Potential

¥ Fit a bond lengths and angles to Gaussian 
distribution calculated from atomistic trajectory

 E.g., Bond distribution for lipid tail-tail 
interaction

o Numerical non-Bonded Potential

 i.e., if g0(r) > g*(r) the strength of attraction will decrease

¥ Repeat until termination criteria satisÞed
 Negligible change in potential

¥ Damping factor stabilizes optimization in crystalline 
systems

11

  
V

j+1
(r ) = V

j
(r )+ δkT ln

g
0
(r )

g
*
(r )

Milano G, et. al., J. Polymer Sci. B, 43, 871 (2005); Reith D, PŸtz M, MŸller-Plathe F, J. Comp. Chem., 24, 1624 (2003)
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Optimization of CG Model
O

O
H

   

    
    

    
    

    
    

11Tuesday, July 13, 2010



12

Fatty Acids

 Long carbon tail 
o 20-30 CÕs in length

¥ C24:0 and C26:0 most prevalent in SC

¥ Saturated tail

Protonated acid head group
o Softer interaction

Key features of mapping
o Simplicity
o Transferability

¥ Mapping
 Acid head group
 4 carbons per tail bead
 2 or 4 carbons per terminal bead

C24:0C26:0

O

O
H

TRM2

   

    
    

    
    

    
    

O

O
H

HEAD

TAIL

TRM4

   

    
    

    
    

    
    

Hadley and McCabe, Journal of Chemical Physics, 132, 134505 (2010). 
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CG Force Field Parameterization
 Comparison of atomistic and coarse grained radial 

distribution functions for crystalline C26:0 simulation
o Tail - tail RDF
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CG Force Field Parameterization
 Comparison of atomistic and coarse grained radial 
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CG Force Field Parameterization
 Comparison of atomistic and coarse grained radial 

distribution functions for crystalline C26:0 simulation
o Tail - tail RDF
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CG Force Field Parameterization
 Comparison of atomistic and coarse grained radial 

distribution functions for crystalline C26:0 simulation
o Tail - tail RDF
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o Extrapolated*

¥ Density (g/cc)
 1.004 

¥ Crystal lengths (•)
 a = 52.401 
 b = 4.9487 
 c = 9.406 

¥ Crystal angles
 α = 90.000o

 β = 90.000o

 γ = 90.447o

o Atomistic
¥ Density (g/cc)

 1.002 

¥ Crystal lengths (•)
 a =52.790 ± 0.178
 b = 4.8738  ± 0.015
 c = 9.517  ± 0.036

¥ Crystal angles
 α = 88.842o ± 0.537

 β = 89.690o ± 0.278

 γ = 87.225o ± 0.731

o Coarse-Grained
¥ Density (g/cc)

 1.044

¥ Crystal lengths (•)
 a =55.930  ± 1.875
 b = 4.6469 ± 0.282
 c = 9.087  ± 0.168

¥ Crystal angles
 α = 90.414o ± 1.271

 β = 89.694o ± 1.453

 γ = 88.153o ± 6.859

*Moreno E, et al., Acta Crystal. Sect. C., 62, O129 (2006). 

Validation of CG FFA Model
 Comparison of crystal structures for C24:0
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Validation of CG FFA Model
 Comparison of crystal structures for C24:0

o Hydrogen-bonding network is contained within the same 
cross-sectional plane as in the atomistic crystal 

¥ Angle between the plane and the acid tails is reproduced
 37.28û ± 2.76  (atomistic) and 36.97û ± 3.51 (CG)

¥ Average distance between hydrogen-bonded HEAD beads 
retained
 5.563 • (atomistic) and 5.113 • (CG)

Hadley and McCabe, Journal of Chemical Physics, 132, 134505 (2010). 
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Cholesterol Structural Features

Rigid regions and ßexible regions
o Flexible tail
o Rigid multi-ring structure

¥ Rough top face
 Chiral methyl groups

¥ Smooth bottom face

o Amphiphilic 
¥ Hydrophobic and hydrophilic regions

 Hydrophilic alcohol group

HO H

H
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Cholesterol CG Mapping
Retains important features of atomistic molecule

o Multi-ring structure

HO H

H

 

ALC

1RNG

2RNG

3RNG

4RNG
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Cholesterol CG Mapping
Retains important features of atomistic molecule

o Multi-ring structure
o Flexible tail

HO H

H

 

TALC

 TERC
ALC

1RNG

2RNG

3RNG

4RNG
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Cholesterol CG Mapping
Retains important features of atomistic molecule

o Multi-ring structure
o Flexible tail
o Chiral methyls 

(CHM) mapped as 
separate beads to 
represent the 
ÒroughÓ face

HO H

H

 

 CHM  CHM

ALC

1RNG

2RNG

3RNG

4RNG

TALC

 TERC
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Cholesterol CG Mapping
Retains important features of atomistic molecule

o 8 different bead types
¥ 36 interactions to be optimized in a pure cholesterol system

HO H

H
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Cholesterol CG Mapping
Retains important features of atomistic molecule

o 8 different bead types
¥ 36 interactions to be optimized in a pure cholesterol system

 Homogenized model
o Replace 4 different 

ring beads with one 
kind of ring bead

¥ 5 different bead 
types and 15 
interactions to 
optimize

HO H

H
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o Experimental
¥ Density (g/cc)

 1.021 

¥ Crystal Lengths (•)
 a = 14.172
 b = 34.209
 c = 10.481

¥ Crystal Angles
 α = 94.64o

 β = 90.67o

 γ = 96.32o

o Homogenized CG
¥ Density (g/cc)

 1.03 

¥ Crystal Lengths (• )
 a = 13.949 ± 0.062
 b = 33.823 ± 0.598
 c = 10.749 ± 0.086

¥ Crystal Angles
 α = 97.51o ± 3.72

 β = 89.99o ± 0.99

 γ = 94.93o ± 3.29

o Full CG
¥ Density (g/cc)

 1.007

¥ Crystal Lengths (• )
 a = 14.133 ± 0.226
 b = 34.315 ± 0.763
 c = 10.748 ± 0.077

¥ Crystal Angles
 α = 94.40o ± 1.65

 β = 89.82o ± 0.83

 γ = 99.24o ± 5.60

Shieh HS, et al., Acta Cryst. Sect. B 37, 1538 (1981); Cournia, Z., J. C. Smith, and G. M. Ullmann. Journal of Computational Chemistry 26:1383 (2005).

Validation of CG Force Field
 Crystal structure parameters for cholesterol
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 With the full CG model the overall shape of the crystal is retained 
o Spacing between the molecules and their orientations are in good agreement 

with that seen atomistically 

o The molecules maintain sheets as observed in the atomistic simulations with 
similar spacing between the sheets

 

Validation of CG Force Field
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Validation of CG Force Field
 With the full CG model the overall shape of the crystal is retained 

o Spacing between the molecules and their orientations are in good agreement 
with that seen atomistically  

o The molecules maintain sheets as observed in the atomistic simulations with 
similar spacing between the sheets
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 With the homogenized CG model the molecules rotate along the 
axis of the molecule
o The molecules can arrange themselves within the crystal structure in 

multiple ways that produce the same RDFs, but represent different molecular 
arrangements within the unit cell

¥ Hydrogen-bonding between ALC beads is retained in the homogenized model 

Validation of CG Force Field
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CG Water Models

Single site
o Non-bonded interactions Þtted using center of mass 

(COM) CG methods
¥ Reith, PŸtz, and MŸller-Plathe (RPM) method
¥ Force-matching (Voth, et al.)

Multiple waters mapped to single beads 
o E.g., Marrink, et al., J. Phys. Chem. B 750 (2004)

¥ Four waters to one bead
 Coordination number = 4.35

¥ Based on matching phase behavior

o Incompatible with COM-based methods
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Novel CG Water Model
 K-means algorithm used to map waters to CG beads 

o Determine number of water beads
¥ i.e., number of waters per CG bead

o Find initial position for water beads
¥ Determine which bead each water is closest to
¥ Calculate center of mass of waters within each bead
¥ Move the beadÕs position to the center of mass

o Repeat until position of the bead remains constant

 BeneÞts of using K-means algorithm
o Compatible with COM-based CG methods
o Capable of mapping multiple waters to single beads 

Hadley and McCabe, Journal of Physical Chemistry B, 114, 4590Ð4599 (2010). 
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 CG Water Model
 Determine optimum degree of coarse-graining for water

o Studied pure water and mixtures of representative solutes 
¥ 1-pentanol
¥ Hexadecanoic acid as a representative lipid 

 Map all atomistic simulations to CG level
o Apply K-means algorithm to map water to CG beads 

¥ Study several H2OX models
 X = 1, 3 -6, 8 and 9

 Scoring function based on 
combination of speed and accuracy

HO

  
S

fxn
=

Speed  scale

RDF * %Diff (ρ
pure

)
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 Determine optimum degree of coarse-graining for water
o Studied pure water and mixtures of representative solutes 

¥ 1-pentanol
¥ Hexadecanoic acid as a representative lipid 

 Map all atomistic simulations to CG level
o Apply K-cluster algorithm to map water to CG beads 

¥ Study several H2OX models
 X = 1, 3 -6, 8 and 9

 Scoring function based on 
combination of speed and accuracy

HO

  
S

fxn
=

Speed  scale

RDF * %Diff (ρ
pure

)

Waters/bead Speed scale
RDF merit 
function

RDF scale
Density of 
pure water

% difference 
in density

Scoring 
function

atomistic 1.00 1.88E-03 1.00 0.9983 0.0% n/a
1 11.92 1.86E-02 9.85 0.9741 -2.4% 49.87
3 34.14 3.38E-03 1.79 0.9343 -6.4% 296.61
4 52.95 7.75E-03 4.11 0.9996 0.1% 763.92
5 66.50 2.35E-02 12.45 0.9815 -1.7% 316.78
6 76.32 5.00E-02 26.52 1.0942 9.6% 29.97
8 85.99 5.18E-02 27.48 1.0190 2.1% 150.98
9 94.18 5.35E-02 28.39 0.9412 5.7% 57.96

 CG Water Model
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FFA/CHOL/Water Bilayer System

Study based on experimental work of Laßeur and 
coworkers on phase behavior of hydrated mixtures of 
C16:0 and CHOL
o Below 50ûC separate crystalline domains observed

¥ At 50 mol % CHOL a bilayer forms with a coexisting ßuid phase on 
heating 

¥ CHOL was shown to modify the behavior of the C16:0 by lowering 
its melting point compared to the pure state
 At lower temperatures FFA crystals are more stable than bilayer
 At higher temperatures FFA is ßuid enough to mix with CHOL

o Symbiotic relationship
¥ Fatty acid acts as a source of hydrophobic shielding for CHOL
¥ CHOL acts as a rigidiÞer of FFA tails preventing formation of liquid 

phase

Ouimet, J.; Croft, S.; Pare, C.; Katsaras, J.; Laßeur, M. Langmuir 2003, 19, 1089
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CG system
o 400 C16:0
o 400 CHOL
o 104 water beads 

Atomistic system
o Pre-assembled 

bilayer
o 144 C16:0 
o 144 CHOL
o 6000 waters

FFA/CHOL/Water Bilayer
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 Integration of both lipids
o Lipid aggregation initiated by hydrophobic interactions
o Bilayer structure induced by hydrophilic interactions

 Average bilayer height 30 • and area/lipid 34 •2

o Compare well to experimental and atomistic values 
¥ Bilayer height ~32 •

¥ Average area/lipid - 33 •2 

31

FFA/CHOL/Water Bilayer
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 Integration of both lipids
o Lipid aggregation initiated by hydrophobic interactions
o Bilayer structure induced by hydrophilic interactions

 Average bilayer height 30 • and area/lipid 34 •2

o Compare well to experimental and atomistic values 
¥ Bilayer height ~32 •

¥ Average area/lipid - 33 •2 
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FFA/CHOL/Water Bilayer
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 Experimentally chain lengths between 14-18 carbons required for bilayer 
formation
o Hydrophobic match maximizes VDW contacts

   

o C12:0 fatty acid more soluble in water phase
¥ Micelles cause buckling in bilayer

32

C12:0 Bilayer Destabilization
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C24:0 Bilayer Destabilization

 Longer tails create gaps between leaßets

 Water enters bilayer between leaßets
o Cause leaßets to ÒunzipÓ
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Conclusions
 Robust and transferable CG models developed

o Crystal structures can be reproduced
¥ Requires damping factor 

o K-means algorithm maps multiple waters to CG beads
¥ 4-water bead has ideal degree of coarse-graining

 Speed and accuracy

 Models capable of self-assembly 
o C16:0/CHOL/water system

¥ Predicted structure agrees well with experimental 
bilayer

¥ Can predict destabilization behavior
 C12:0 forms spherical micelles which buckle the bilayer

 C24:0 allows for water pockets to ÒunzipÓ bilayer leaßets
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