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Motivation

[ Skin diseases are extremely common
0 More prevalent than obesity, hypertension and cancer
¥ Atopic dermatitis alone aff3icts more than 15 million people in the U¢
with treatment costs exceeding $1 billion/year
 Diseased skin is often characterized by a reduced barrier func
and an altered lipid composition and organization

0 Mounting evidence that an impaired skin barrier does have a signibcant
life threatening, affect on systemic health

¥ AD exhibits a strong concordance with asthma and hay fever
= 50 - 75% of children with AD develop asthma

A clear understanding of how the lipids of the skin assemble i<
needed

0 A molecular basis for developing treatment strategies to restore barrier
function in diseased skin

0 A molecular basis for breaching the barrier in a controlled manner to del
drugs more effectively across the skin
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Structure of Human SKin
)

] Stratum corneum known to control barrier function of skir
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Structure of Stratum Corneum

U Experimentally much is known about the nature of the SC

o Consists of dead, essentially impermeable, Rat, hexagonal, protein-en
corneocytes

¥ Organized in aligned sheets
about 10 - 40 cells deep

¥ Intercellular space
surrounding corneocytes corneocyte
(~ 0.1 mm thick) is plled
with highly organized

Confocal micrograph

lipid bilayers
piabiayers lipid
= Control barrier )
: bilayers
function

e
._corneocyte

Transmission
electron micrograph
RuO, fixed
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Stratum Corneum Lipids

4 Biologically unique lipid mixture

CERI (EOS)
CER2 (NS) CER3 (NP)
CER4 (EOH)
CERS5 (AS) CERG6 (AP)
CER7 (AH) CER8 (NH)
¥
CER9 (EOP)

Component Mole %
Ceramides 20
Cholesterol 40
Fatty acids 40

HO

HO
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Stratum Corneum Lipids

dProposed organization of SC lipids

¥ Tri-layer model with ceramides in the hairpin conbguration
= Repeat unit dimensions are consistent with experimental observations

Acevl i lipid bilayers in TEM image
( F ceyliceramiae
— > @ « »
@»—  Cholesterol -—— e —
«— Ceramide — ) O
—  Fatty acid (@m o | ——

» r— Cl— =———
Small-angle X-ray diffraction L 6nm ,

observations | 13 nm |

TEM observationb_| [ [ 1 [ [ ] %/
broad narrow broad broad

narrow

¥ Tails of each ceramide are extended and inserted into adjacent layers resulti
tri-layer molecular arrangement
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Stratum Corneum Lipids

U Biologically unique lipid mixture Component | Mole %
o0 No phospholipids Ceramides 20
Cholesterol 40
CERI (EOS) Fatty acids 40

CER2 (NS) CER3 (NP)
HO
CER4 (EOH)
Cholesterol
CERS (AS) CER6 (AP)
(e}
g
CER7 (AH) CERS8 (NH) o
o]
Ceramides CER9 (EOP) Fatty acids

o0 Lipids extracted from the SC exhibit the same phase behavior and
lamellar structures outside the SC as observed in the SC
¥ i.e., SC lipids self-assemble

¥ Synthetic lipid mixtures containing as few as 6 synthetic CER, equimolar amounts
cholesterol and a 7 component mixture of FFA closely mimic the SC lipid organize
to a large extent
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Optimization of CG Model

d Perform and map atomistic MD simulations to C(
level using center of mass to provide target radia
distribution functions (RDF) for optimization

¥ Simulations performed in LAMMPSs and DL_POLY

¥ Verify crystal structures (density)
¥ Melting points
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Validation of FFA Atomistic Model

L Comparison of crystal structures for C16:0

0 Experimental 0 Atomistic o Percentage difference
¥ Density (g/cc) ¥ Density (g/cc) ¥ Density
= 1.027 = 1.044 = 1.66%
¥ Crystal lengths (3 ¥ Crystal lengths (9 ¥ Crystal lengths
» a=3562 » a=39.069 +0.223 * a=9.68% *0.63
» b=4.9487 = b=45682 +0.023 » b=-7.69% +0.47
= c=9406 = ¢=9.1605 *+0.053 = ¢=-2.61% + 0.56
| ¥
¥ Crystal angles ¥ Crystal angles Crystal angles
» o=91.63%+0.577 = o=1.82% 0.64
= o =90.000
= =87.512+0.314 = B=-2.76% 0.35
= B =90.000
= y=87.416+ 0.479 = y=-3.35% 0.53
= y=90.447

10
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Optimization of CG Model

0 Parameterized using Reith, PYtz, and MY

Plathe (RPM) method .

0 Bonded Potential .

¥ Fit a bond lengths and angles to Gaussian
distribution calculated from atomistic trajectory

= E.g., Bond distribution for lipid tail-tail
interaction

o Numerical non-Bonded Potential
g,(r)
g.(r)

= e, if gO(r) > g*(r) the strength of attraction will decreas
¥ Repeat until termination criteria satisbed
= Negligible change in potential
¥ Damping factor stabilizes optimization in crystalline
systems

V.(n=V(r)+ OkT In

11
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Fatty Acids

1 Long carbon tail g
¥ C24.0 and C26:0 most prevalent in S( (’
¥ Saturated tall (’

 Protonated acid head group

1 Key features of mapping I
¥ Mapping
= Acid head group
= 4 carbons per tail bead 5!

= 2 or 4 carbons per terminal bead

C26:0

C24:0

Tuesday, July 13, 2010

12



CG Force Field Parameterization

L Comparison of atomistic and coarse grained radial
distribution functions for crystalline C26:0 simulation
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CG Force Field Parameterization

L Comparison of atomistic and coarse grained radial

distribution functions for crystalline C26:0 simulation
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CG Force Field Parameterization

L Comparison of atomistic and coarse grained radial
distribution functions for crystalline C26:0 simulation
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CG Force Field Parameterization

L Comparison of atomistic and coarse grained radial
distribution functions for crystalline C26:0 simulation
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Validation of CG FFA Model

L Comparison of crystal structures for C24:0

0 Extrapolated o Atomistic o Coarse-Grained

¥ Density (g/cc) ¥ Density (g/cc) ¥ Density (g/cc)
= 1.004 " 1.002 " 1.044

¥ Crystal lengths (3 ¥ Crystal lengths (9 ¥ Crystal lengths (9
. 4=52401 = a=52.790+ 0.178 = a=55.930 +1.875
= b=409487 " p=4.8738 £ 0.015 " b=4.6469 + 0.282
= c=9406 = ¢=9.517 +£0.036 = ¢=9.087 +£0.168

¥ Crystal angles ¥ Crystal angles ¥ Crystal angles
= o =90.000 = o =88.842+ 0.537 " a=90414+1.271
= B =90.000 = 3=89.690+ 0.278 = =89.694+ 1.453
= y=90.447 = y=87.22%+ 0.731 = v=88.153+ 6.859

14
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Validation of CG FFA Model

L Comparison of crystal structures for C24:0

0 Hydrogen-bonding network is contained within the same
cross-sectional plane as in the atomistic crystal

¥ Angle between the plane and the acid tails is reproduced
= 37.280 = 2.76 (atomistic) and 36.970 = 3.51 (CG)
¥ Average distance between hydrogen-bonded HEAD beads
retained
= 5.563 ¢ (atomistic) and 5.113 « (CG)

15
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Cholesterol Structural Features

dRigid regions and [3exible regions

¥ Rough top face
= Chiral methyl groups

¥ Smooth bottom face

¥ Hydrophobic and hydrophilic regions
= Hydrophilic alcohol group
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Cholesterol CG Mapping

[ Retains important features of atomistic molecule
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Cholesterol CG Mapping

[ Retains important features of atomistic molecule

IRNG 3RNG TALC
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Cholesterol CG Mapping

[ Retains important features of atomistic molecule

CHM

3RNG TALC

0 Multi-ring structure
o Flexible tall

o Chiral methyls
(CHM) mapped as
separate beads to
represent the
OroughO face

Tuesday, July 13, 2010

19




Cholesterol CG Mapping

[ Retains important features of atomistic molecule

o 8 different bead types
¥ 36 interactions to be optimized in a pure cholesterol system

20
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Cholesterol CG Mapping

[ Retains important features of atomistic molecule

o 8 different bead types
¥ 36 interactions to be optimized in a pure cholesterol system

1 Homogenized model

0 Replace 4 different
ring beads with one

kind of ring bead
i ¥ 5 different bead
Q Q types and 15

Interactions to
optimize
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Validation of CG Force Field

4 Crystal structure parameters for cholesterol

0 Experimental o FullCG o0 Homogenized CG
¥ Density (g/cc) ¥ Density (g/cc) ¥ Density (g/cc)
= 1.021 = 1.007 = 1.03
¥ Crystal Lengths (3 ¥ Crystal Lengthge ) ¥ Crystal Lengthge )
" a=14.172 = a=14.133 + 0.226 = a=13.949 + 0.062
= bh=234.209 = b=34.315+0.763 = p=33.823 + 0.598
= ¢=10.481 = ¢=10.748 £ 0.077 = ¢=10.749 £ 0.086
¥ Crystal Angles ¥ Crystal Angles ¥ Crystal Angles
= a=94.6% " o0=94.40+ 1.65 = =975+ 3.72
= B=90.67 = 3=289.82+0.83 = 3=89.99+0.99
= v=06.32 = y=99.24% 5.60 " Y=94.93+3.29
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Validation of CG Force Field

4 With the full CG model the overall shape of the crystal is retain

0 Spacing between the molecules and their orientations are in good agreé
with that seen atomistically

o The molecules maintain sheets as observed in the atomistic simulations
similar spacing between the sheets
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Validation of CG Force Field
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Validation of CG Force Field

 With the homogenized CG model the molecules rotate along t
axis of the molecule
0 The molecules can arrange themselves within the crystal structure in
multiple ways that produce the same RDFs, but represent different mole:

arrangements within the unit cell
¥ Hydrogen-bonding between ALC beads is retained in the homogenized model

Tuesday, July 13, 2010 24




CG Water Models

dSingle site

0 Non-bonded interactions btted using center of mass
(COM) CG methods

¥ Reith, PYtz, and MYller-Plathe (RPM) method
¥ Force-matching (Voth, et al.)

d Multiple waters mapped to single beads

o E.g., Marrink, et al., J. Phys. Chem. B 750 (2004)

¥ Four waters to one bead
= Coordination number = 4.35

¥ Based on matching phase behavior
0 Incompatible with COM-based methods

25
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Novel CG Water Model

0 K-means algorithm used to map waters to CG beads
o0 Determine number of water beads
¥ i.e.,number of waters per CG bead
o Find initial position for water beads
¥ Determine which bead each water is closest to
¥ Calculate center of mass of waters within each bead
¥ Move the beadOs position to the center of mass
0 Repeat until position of the bead remains constant

O O
O O O
Q Q
? o -
DDD >
O O O
n o o ©
O O

O Benebts of using K-means algorithm
o Compatible with COM-based CG methods
o Capable of mapping multiple waters to single beads
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CG Water Model

 Determine optimum degree of coarse-graining for water

¥ 1-pentanol

¥ Hexadecanoic acid as a representative lipid \/\/\OH
O Map all atomistic simulations to CG level

¥ Study several H20X models
= X=1,3-6,8and 9
1 Scoring function based on s Speed scale
combination of speed and accuracy “m — RDF * %Diff (p. )
pure
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CG Water Model

 Determine optimum degree of coarse-graining for water

o Studied pure water and mixtures of representative solutes
¥ 1-pentanol

¥ Hexadecanoic acid as a representative lipid \/\/\OH
O Map all atomistic simulations to CG level
o0 Apply K-cluster algorithm to map water to CG beads
¥ Study several H20X models
* X=1,3-68and?9 Speed scale
Q Scoring function based on ** ~ RDF * %Diff (p,,.)
combination of speed and accuracy

RDF merit Density of % difference  Scoring

Waters/bead Speed scale , RDF scale . ) .
function pure water __in density function
atomistic 1.00 |.88E-03 1.00 0.9983 0.0% n/a
I 11.92 |.86E-02 9.85 0.9741 -2.4% 49.87
3 34.14 3.38E-03 1.79 0.9343 -6.4% 296.61
.4 5295 77503 41l 099%  0l% 76392
5 66.50 2.35E-02 12.45 0.9815 -1.7% 316.78
6 76.32 5.00E-02 26.52 1.0942 9.6% 29.97
8 85.99 5.18E-02 27.48 1.0190 2.1% 150.98
9 94.18 5.35E-02 28.39 0.9412 5.7% 57.96
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FFA/CHOL/Water Bilayer System

1 Study based on experimental work of LalReur and
coworkers on phase behavior of hydrated mixtures of
C16:0 and CHOL

o0 Below 50UC separate crystalline domains observed

¥ At 50 mol % CHOL a bilayer forms with a coexisting 3uid phase
heating
¥ CHOL was shown to modify the behavior of the C16:0 by lowerin
Its melting point compared to the pure state
= At lower temperatures FFA crystals are more stable than bilayer
= At higher temperatures FFA is Ruid enough to mix with CHOL
0 Symbiotic relationship
¥ Fatty acid acts as a source of hydrophobic shielding for CHOL

¥ CHOL acts as a rigidiber of FFA talls preventing formation of liqu
phase
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FFA/CHOL/Water Bilayer

JCG system
0 400C16:0
0 400 CHOL
o 10* water beads

d Atomistic system

o0 Pre-assembled
bilayer

o 144 C16:0

0 144 CHOL

o 6000 waters
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FFA/CHOL/Water Bilayer

d Integration of both lipids

o Lipid aggregation initiated by hydrophobic interactions
o Bilayer structure induced by hydrophilic interactions

[ Average bilayer height 30 « and area/lipid 34 e
o Compare well to experimental and atomistic values
¥ Bilayer height ~32
¥ Average area/lipid - 33%

31
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C12:0 Bilayer Destabilization

 Experimentally chain lengths between 14-18 carbons required for bilaye
formation

¥ Micelles cause buckling in bilayer

Tuesday, July 13, 2010 32



C24:0 Bilayer Destabilization

1 Longer talls create gaps between lealiets

1 Water enters bilayer between leal3ets
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Conclusions

1 Robust and transferable CG models developed

¥ Requires damping factor

¥ 4-water bead has ideal degree of coarse-graining
= Speed and accuracy

O Models capable of self-assembly

¥ Predicted structure agrees well with experimental
bilayer
¥ Can predict destabilization behavior
= (C12:0 forms spherical micelles which buckle the b
= C24:0 allows for water pockets to OunzipO bilayer
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