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@ Direct numerical simulation (DNS) of turbulence
@ Resolution requirements, HPC, trends

@ Turbulent mixing
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Direct Numerical Simulations

@ Turbulence: most common state of fluid motion

& random fluctuations over a wide range of non-linearly
interacting scales

@ range of scales increases with Reynolds number Ry (very high
in applications)
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Direct Numerical Simulations

@ Turbulence: most common state of fluid motion

& random fluctuations over a wide range of non-linearly
interacting scales

@ range of scales increases with Reynolds number Ry (very high
in applications)

@ Navier-Stokes eqns.: conservation of mass and momentum

Vu = 0
Ou

1 2
E—I—(wV)u = —;Vp%—uv u

@ Direct Numerical Simulations (DNS): resolve all
“dynamically relevant” length and time scales

s tremendous detail (beyond experiments), systematic variation
of parameters

@ computationally intensive in both time and memory
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Numerical Method

@ Fourier pseudo-spectral in space (Rogallo 1981)

& accurate and efficient: Fast Fourier Transforms
with operations count proportional to N3 log, N

@ optimized FFT libaries (FFTW, IBM-ESSL)

o modes formally decoupled in wavenumber space,
hence readily parallelizable

@ 279 and 4" order Runge-Kutta in time

@ Most time-consuming task: 3D FFT
@ domain decomposition: critical
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Three-dimensional FFTs

@ Decomposition in “pencils”: 2D processor grid (M x Ms)

N/My
grid points
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e FFT(X)— transpose— FFT(Z) —transpose— FFT(Y)

@ Two collective communications among ~ v/ M procs.

o

M up to N?

(Very general: allows My # M,

or not integer factors of N)
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Strong scaling

@ For a given problem size N3:

time/step (secs.)

time/step oc M~1| if perfect

N3 = 20483, 40063, 81923
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Strong scaling

@ For a given problem size N3:

time/step oc M~1| if perfect

time/step (secs.)

N3 = 20483, 40063, 81923
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@ 40963 in production, matching world-record in published work

@ Largest (and best resolved) simulation of turbulent mixing
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The “dynamically relevant” scales

Full range of scales in space and time

Size of domain Lo>L (integral length scale

Grid spacing Ax <n (Kolmogorov length scale

)

)

Length of simulation T > Tg (eddy-turnover time)
)

Time step At LT, Kolmogorov time scale
n g
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The “dynamically relevant” scales

Full range of scales in space and time

Size of domain Lo>L (integral length scale)
Grid spacing Ax <n (Kolmogorov length scale)
Length of simulation T > Tg (eddy-turnover time)
Time step At <71,  (Kolmogorov time scale)

o Classical textbook scale estimates (K41) give:
N3 ~ (L/n)3 ~ Ry¥? and Tg/7, ~ Ry
Computational work: W ~ R,°

@ Moore's law: Ry grows exponentially in time
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HPC and DNS evolution
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HPC and DNS evolution
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Small-scale intermittency

Strong, localized fluctuations in space/time, especially at high Ry

@ Instantaneous energy
dissipation rate
€= 21/S;jSU

® What is the smallest scale
we need to resolve?

R\~650 (20483)
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Small-scale resolution

@ For spectral codes, resolution criterion typically based on
2.98
Ax/n

max7]~
where ko = v2N/3

@ DNS aimed at high Ry: kpaxn=~1—2 (Ax/n~1.5—2)
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DNS data

@ Small scale activity: dissipation rate € and enstrophy Q
o Database at R\~140 and kpax7 from 1.5 to 11 (up to 2048%)

" € = 2vsysy, 1= wjwj @ Standard kmaxn~1.5
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DNS data

@ Small scale activity: dissipation rate
@ Database at R\~140 and kmax7 from

€ = 21/5,'J'S;j, Q= Wwjwj
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€ and enstrophy Q2
1.5 to 11 (up to 2048%)

Standard kmaxn=1.5
underestimates moments
kmaxn==3 enough for p < 4
Error increases with order

Resolution requirement
depends on the quantity
of interest!

W ~ p4R)\6'16

So, what do we want to
compute in 20207
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Mixing of passive scalars: parameters and scales

@ Turbulence can mix very efficiently; orders of magnitude faster
than molecular processes

o Scalar fluctuations: [9¢/0t +u-V¢ = —u -V + DV2¢

@ Characterized by Schmidt number Sc = v/D
O(1072) liquid metals, ionized plasmas
1) temperature in air

o(
O(10%) dye or saline solution in water, organic liquids
0(10°) smoke, clouds

©

¢ © @
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Mixing of passive scalars: parameters and scales

@ Turbulence can mix very efficiently; orders of magnitude faster
than molecular processes

o Scalar fluctuations: [9¢/0t +u-V¢ = —u -V + DV2¢

@ Characterized by Schmidt number Sc = v/D

0(1072) liquid metals, ionized plasmas

O(1) temperature in air

O(10%) dye or saline solution in water, organic liquids
0(10°) smoke, clouds

©

¢ © @

o If Sc is large:

o smallest scale (Batchelor): mg = 1nSc~/2 (15 < 1)
o difficult in experiments and simulations
o scaling less understood
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Additional constraints

o Classical phenomenology: W ~ Ry\°Sc? if ng is to be resolved
(subject to CFL condition)

D.A. Donzis Towards Petascale Turbulence and Turbulent Mixing 14/2(



Additional constraints

o Classical phenomenology: W ~ Ry\°Sc? if ng is to be resolved
(subject to CFL condition)

@ But numerically unstable at high R)\! (unexpected)
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Additional constraints

o Classical phenomenology: W ~ Ry\°Sc? if ng is to be resolved
(subject to CFL condition)

@ But numerically unstable at high R)\! (unexpected)

@ Stability analysis for 1D scalar equation:

o stability limits:
CFL ~ Sc=2/3 (RK2) and CFL ~ Sc~'/? (RK4)

o consistent with 3D tests

@ So,

W ~ R)\6'16SC5/2 R)\SC2/5 ~ 100-041xyear—80

@ In 2020: R,Sc?/5 ~ 2500
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The physics of mixing: local isotropy

o Isotropy at small scales, regardless of large-scale geometrical
features (e.g. mean gradient V&)
@ Implication: odd-order moments of gradients should vanish
o separate Sc and R) effects
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The physics of mixing: local isotropy

o Isotropy at small scales, regardless of large-scale geometrical

Skewness of scalar gradient along mean gradient

features (e.g. mean gradient V&)

@ Implication: odd-order moments of gradients should vanish

o separate Sc and R) effects
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R\~ 8, 38, 140, 240, 650

@ Skewness of V| ¢ decreases
with Sc

@ Isotropy recovered at
Sc — >

@ Trend depends on Ry,
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Local isotropy: R, effects

@ Literature: persistent anisotropies with R)

@ Problematic from theoretical and practical points of view
(Warhaft 2000)

R Kmax1) M3 /1’4||/M4L
140 1.4 1.39 1.138
240 14 1.34 1.057
400 1.4 1.34 1.092
650 1.4 1.38 1.129
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Local isotropy: R, effects

@ Literature: persistent anisotropies with R)

@ Problematic from theoretical and practical points of view

(Warhaft 2000)

R Kmax™) 13 fa))/ b,
140 1.4 1.39 1.138
240 1.4 1.34 1.057
400 1.4 1.34 1.092
650 1.4 1.38 1.129
140 55 1.77 1.272
240 5.1 1.49 1.099
650 2.7 1.33 1.043

@ Low-resolution data mask isotropy trend!
(Donzis & Yeung, Physica D 2010)
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Mixing at sub-Kolmogorov scales

@ What drives scalar fluctuations at kn > 17

@ Batchelor 1962: most compressive principal strain ()
o From data (y) =1/Cgm;, 1, =/v/(e) Cgr2

o Ey(k) = Co{)7, thk=*f(kns)
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Mixing at sub-Kolmogorov scales

@ What drives scalar fluctuations at kn > 17

@ Batchelor 1962: most compressive principal strain ()
o From data (y) =1/Cgm,;, 1, =+/v/(e) Cp=2

o Ey(k) = Co{)7, thk=*f(kns)

T T T g Database (up to 40963):

6_
_______________ : . o Ry~ 8—0650
T TSP P
B a- ¢ o Sc=1/8— 1024
2F % %% % %% _ o Batchelor estimate Cg ~ 2
st oo sl
A

@ Cg =~ 5 implies mixing is dominated by weaker compression
(not the mean (7))

D.A. Donzis Towards Petascale Turbulence and Turbulent Mixing 172



Compressive strain
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@ Regions of weakly
compressive strain rate
become more probable

@ Consistency with Batchelor's
picture with v, at high R)

So, what happens in real high-R) flows? Need Petascale simulations!
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Concluding remarks: turbulence and beyond

@ Computing power = more realistic simulations (obviously)

@ But... how to use that power?
@ intermittency: order-dependent resolution criterion
@ scalars: further constraints (space and time)

o achievable Ry, lower that previously thought

@ Well resolved simulations of turbulent mixing
@ return to isotropy, masked at lower resolutions

@ consistency with Batchelor theory at high R
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Concluding remarks: computing turbulence

@ Towards Peta- and Exa-scale computing:

@ communication is the bottleneck: network contention as more
cores share network resources

o use fewer cores to communicate: threaded FFTWs
@ hybrid MP1/OpenMP (Blue Waters, BG/Q,...)

@ more control over communications: one-sided,
pack-send-unpack (more memory)

@ overlap communication with computation
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Concluding remarks: computing turbulence

@ Towards Peta- and Exa-scale computing:

@ communication is the bottleneck: network contention as more
cores share network resources

o use fewer cores to communicate: threaded FFTWs
@ hybrid MP1/OpenMP (Blue Waters, BG/Q,...)

@ more control over communications: one-sided,
pack-send-unpack (more memory)

@ overlap communication with computation
@ The challenge of massive data:
@ a snapshot of the velocity and scalar fields: 1.25TB

o archival? transfer the data? allow remote post-processing?

@ Close collaboration with CS essential: new tools, techniques,
programming models, ...
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