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An Introduction to MADNESS

What is it?
Example of use
– Computational Chemistry
– Nuclear Density Functional Theory
– Navier-Stokes Equation

Multiresolution analysis and representation of functions
Non-standard form, 
Separated representation of operators and functions
Examples using operators



What is MADNESS?

Multiresolution Adaptive Numerical Scientific Simulation
– It is an environment to prototype and develop scientific 

applications using multiresolution methods in multiwavelet 
basis from 1-D to 6-D.

– The important concepts
• Multiresolution, multiwavelet, low-separation rank 

approximation of functions and operators
• Multiresolution discontinuous and singular bases
• Each function and operator has its own adaptive 

representation
– It presently contains non-linear time-independent and time- 

dependent solvers for 3-D Density Functional Theory (DFT) 
code and Schrodinger equations for chemistry and nuclear 
physics, but others are working on nano-charge dynamics, bio- 
fluid, chemical reactions, …



MADNESS parallel runtime

MPI Global Arrays ARMCI
GPC/GASNE

 
T

MADNESS math and numerics

MADNESS applications –

 

chemistry, physics, nuclear, ...

MADNESS architecture

Intel Thread Building Blocks being considered for multicore



Example: Integral Formulation for Soln of  Bound State 
Schrödinger Equation

Can solve by using differential formulation and diagonalize Hamiltonian
– Issue: high condition number resulting from adaptive representation of 

unbounded operators, such as Laplacian, limits accuracy and precision
– Use as preconditioner

We form and solving the integral equation
– Eliminates the derivative operator and related “issues”
– Converges as fixed point iteration with no preconditioner

In dimensionless scattering formulation: with energy E and potential V
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MADNESS: High-level composition

Coding composition is close to the physics, example with h=m=1 (chemist 
notation)

•

• operatorT

 

op = CoulombOperator(k, rlo, thresh);
• functionT

 

rho = psi*psi;
• double twoe

 

= inner(apply(op,rho),rho);
• double pe

 

= 2.0*inner(Vnuc*psi,psi);
• double ke

 

= 0.0;
• for (int

 

axis=0; axis<3; axis++) {
• functionT

 

dpsi

 

= diff(psi,axis);
• ke

 

+= inner(dpsi,dpsi);
• }
• double energy = ke

 

+ pe

 

+ twoe;
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Scaling of Poisson and Helmholtz in MADNESS with 
Lattice of Atom Centered Potential

Charge density for Poisson 
Equation
Scattering for Helmholtz Eqn, 
bound-state or Yukawa
Lattice of 1000 atoms
Potential centered at each atom 
center
10 levels of refinement
1.91B equations and variables



Scaling of MADNESS for on Cray XT-5 
Poisson and Helmholtz 

1.91B eqns, 10 levels of refinement, rel. accuracy 1.e-10, 12/1/2009
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Chemistry and Nuclear Physics Application:No Spin-Orbit 
Integral Formulation of Bound State Schrödinger Equation

Given H, in multiwavelet basis and guess wavefunctions, diagonalize
Solving the integral equation
– Eliminates the derivative operator and related “issues”
– Converges as fixed point iteration with no preconditioner

In dimensionless form:
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E.g., Energy of Hydrogen Atom
from mra import *
L = 32.0
Function.k = 7
Function.thresh = 1e-5

def psi(x,y,z):
fac = 102.12922378276677 #sqrt(L**3/pi)
x,y,z = (x-0.5)*L,(y-0.5)*L,(z-0.5)*L
return fac*exp(-sqrt(x*x+y*y+z*z))

def V(x,y,z):
x, y, z = (x-0.5)*L, (y-0.5)*L, (z-0.5)*L
return -1.0/sqrt(x*x+y*y+z*z)

psi = Function(function=psi)
V   = Function(function=V)
px, py, pz = Del*psi
S  = psi.inner(psi)
VE = (V*psi).inner(psi)/S
TE = 0.5*(px.inner(px)+py.inner(py)+pz.inner(pz))/L**2/S
print "norm",S,"kinetic",TE,"potential",VE,"energy",TE+VE
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norm 1.00000000014

kinetic 0.500000335672

potential -1.00000013916

energy -0.499999803488 (exact: -0.5)



2-D Slice of the 3-D Potential for H2



H2 , Schrodinger’s Equation

Chemists need high precision;
– they need to compute differences of energies.

Hydrogen Mol, bond length r=1.4 bohrs
Best variational energy known to us: -1.133629571456 (Mitin)
k=5, -1.1335567888
k=7, -1.1336294353
k=9, -1.1336295698
k=11, -1.1336295713
k=13, -1.1336295714
Truncation 1.e(2-k), with smoothing



Two-Cosh Test Problem

Potential
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Chemistry and Nuclear Physics Application 
Integral Formulation of Bound State Schrödinger Equation
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Representation of Wave-Functions

A 2-D slice of the 3-D support of the 
multiwavelet bases for the 2-cosh potential 
(left) and one of its wave-functions (right).

MADNESS (each function and 
operator has its own adaptive 
pseudo-spectral expansion 
representation)



Plot of Potential and Absolute Value of Wave Functions 
for the 2-cosh Potential, domain > 120 fermi

Fann, Harrison, Pei, Ou, Nazarewicz 2009



Log(abs(u_19)) for HFB 2-cosh



Nuclear structure for an anisotropic two well potential  (3-D)



Recent Progress of MADNESS

Solving A.Bulgac’s SLDA and ASLDA equations for imbalanced Fermi condensates. [A. 
Bugac. PRA 76:040502, PRL 101:215301]

Pairing regularization to avoid cutoff divergent (Bulgac)

Pei, Fann, Harrison, Ou, Nazarewicz 2010



Recent Progress of MADNESS-HFB

Exterior potential, a deformed trap

Benchmarking is done: densities, eigenvalues, 
occupation numbers (MADNESS and B-spline
methods)
SLDA-MADNESS has
been benchmarked (Feb. 2010)
ASLDA-MADNESS has 
been benchmarked (Mar.2010)
Can treat 100 particles in a deformed trap

Pei, Fann, Harrison, Ou, Nazarewicz 2010



Multiresolution Methods for DFT

Adaptive 3-D multiresolution pseudo-spectral methods for 
nuclei using discontinuous basis
– User defined accuracy gives universal reference and 

good scalability
– Consistent description of bound and resonant states

No assumption on symmetry
Each wave-fn has its own adaptive structure
Can handle nearly singular or discontinuous functions, 
and high gradients
Work is proportional to spectral accuracy
Controllable and guaranteed precision



New algorithm for solving non-linear self-consistent HFB I

1. Given Hamiltonian H, and guess wavefunctions form matrix
With regularization, guess for densities, …

2. Diagonalize to obtain updated and orthogonal wave-functions
3. Update potentials, anomaly density, boundary conditions, 

correlations…using new eigenvalues and eigenfunctions
4. Form and solve the Lippman-Schwinger integral equation by scattering 

methods (approximation expansion in u,a, and G’s)
1. Construction of scattering kernel for each eigenvalue for u’s via 

non-linear optimization
2. Solve for u’s
3. Update potential, densities, BC, correlations, fitting which are 

functions of u’s
4. Construction of scattering kernel for each eigenvalue for a, via 

non-linear optimization
5. Solve for a’s

5. Check error estimates

,( ) ,i j i jH Hφ φ=< >{ }iφ



New algorithm for solving non-linear self-consistent HFB II

Error estimates
– If converged within tolerance, exit
– If not converged go to step 1.
– If further refinement required and not converged within a certain 

number of iterations
• Set new number of multiwavelets, precision, truncation errors, 

iteration count, …
• Project all variables to new level of subspace
• Goto step 1 on last slide



Solving Incompressible Navier-Stokes Equation

Consider the classical incompressible Navier-Stokes equations, in a 
periodic domain

We demonstrate a solution method using multiresolution based Poisson 
and Helmholtz operators
1. Backward Euler in time, implicit (iterative solvers)
2. Fast integral methods that decompose the system into two 

equations by a projection method

(Poisson Problem)

(Helmholtz Problem)

Problem from Hou’s 2008 paper, (Jia, Hill, Fann, Harrison, 2009) 



3-D Navier-Stokes Simulation using MADNESS 
periodic-domain, counter-rotating vortices

2-D slice of a 3-D simulation of two vortices rotating in opposite directions



Simulation 2-D slice




Essential techniques for fast computation

Multiresolution
Analysis

Low-separation 
rank
(Beylkin-Mohlenkamp)

Low-operator 
rank (e.g. SVD, HOSVD)
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Another Key Component

Trade precision for speed –everything
– Don’t do anything exactly
– Perform everything in
– Require

• Robustness
• Speed
• Guaranteed, arbitrary, finite precision

( )O ε



Multiwavelets and Fast Methods

Multiple representations permit each function and operator to have its 
own resolution, or representation depending on precision
Automatic adaptivity for spectral expansion and order of accuracy (h & p) 
– Integral and differential operators (compatible)
– Functions, projections between different level of expansions 

(depending on accuracy)
– Compatible between function and operator calculus

Accurate treatment of singularities
Accurate treatment of higher order derivatives
– Improved treatment of Gibbs type phenomena

Green’s function (Poisson, Helmholtz, etc.) via Low-Separation Rank
– Fast real analysis based O(N log ε) method
– Accuracy is proportional to 

• Degrees of freedom
• Work (flops)

DFT, Lippmann-Schwinger, Hartree-Fock, …
Time-dependent DFT for molecular HF and DFT, Navier-Stokes



1-D Scaling Function Basis: Alpert’s Multiwavelets

Divide domain into 2n pieces (level n)
– Adaptive sub-division (local refinement)
– lth sub-interval [l*2-n,(l+1)*2-n] l=0,…,n-1

In each sub-interval define a polynomial basis
– First k Legendre polynomials,       , rescale and normalized on [0,1)
– Orthonormal, disjoint support

n=0

n=1

n=2

l=0 l=1 l=2 l=3

/2

( ) 2 1 (2 1), [0,1)

( ) 2 (2 ), 2 [ , 1), 0 1
i i
n n n n
il i

x i P x x

x x l x l l l n

φ

φ φ −

= + − ∈

= − ∈ + ≤ ≤ −

…
… …

iP



Scaling Function Basis:Alpert’s, level, n=2

2
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Oct-tree Adaptivity



Adaptivity by Spectral Expansion 
Support of Basis Functions
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Two-scale relationship - I
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Filter coefficients for k=1 (Haar)
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Hence, coefficients of scaling functions and wavelets are 
often referred to as sum and difference coefficients.



Compression of a function

Recursively apply the two-scale relation
The basis is the scaling functions at level 0 and the multiwavelets at 
all levels 

Haar basis (k=1) gives rise to calling coefficients of the scaling 
functions and wavelets as sums and differences respectively (hence 
notation s and d)
Compression & reconstruction are O(N) operations
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Two equivalent representations

Scaling function basis (reconstructed)

Multi-wavelet basis (compressed)

Rapid compression/reconstruction 
– Asymptotically faster than the FFT
– Use most appropriate basis for a given operation
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A Third Equivalent Representation

The function tabulated at the Gauss-Legendre 
quadrature points in each of the adaptively refined boxes
– Enables rapid multiplication of functions and 

application of local functions (e.g., Vxc )
– Diagonal transformation from interpolating 

polynomials 



Truncation Error

Sparsity is from truncation.
To satisfy the global error condition

Truncate according to

This is rather conservative – usually use
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Summary I

Scaling functions
– Easy to manipulate, evaluate, integrate, …

Multi-resolution analysis
– Separates behavior between length scales
– Local truncation while preserving global error bound
– Vanishing moments

Multi-wavelets
– High-order convergence with adaptive representation
– Disjoint support – efficient description of singularities if locacated at 

faces/edges/corners (more efficient than smooth wavelets since they 
do not have disjoint support)

Fast compression and reconstruction
– Orthogonal transformations – numerically stable



Extension to higher dimensions

Scaling function basis is tensor product

Wavelet basis – tensor product is one choice
– Standard form – compress each dimension just as for a matrix
– But cannot refine strictly locally since length scales are mixed 

between dimensions
To refine locally need the non-standard form

( , ) ( ) ( )n n n
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Non-standard form of functions

Construct local basis for Wn-1=Vn- Vn-1
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Non-standard form of operators

Standard form
– Matrix elements between different length scales
– Not very efficient on modern computers with deep memory 

hierarchies
– Potentially O(Nlog N) non-zero terms
Non-standard form
– No matrix elements between lengths scales
– O(N) terms
– Act on (modified) non-standard form of functions
– Derivation is instructive



Non-standard form of operators - II

Pn an orthogonal projection into Vn

Qn an orthogonal projection into Wn=Vn+1-Vn

Pn + Qn = Pn+1

Consider the projection of an operator T
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NS Form of Operators III

Matrix elements in the scaling function basis

Matrix elements of the NS form
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Integral operators - I

Consider ( ) pv ( ) ( )Tf x dyK x y f y= −∫
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Integral operators - II

The autocorrelation and cross-correlation functions also 
have a 3 term 2-scale relations.
Matrix elements easy to evaluate from compressed 
form of kernel K(x)
Application in 1-d is fairly efficient
– O(k2) operations

In 3-d seems to need O(Nboxk6) operations
– Prohibitively expensive
– Cross-correlations reduces to O(8Nbox k4)
– LSR does more

More intelligent approach
– O(Nbox k4) operations for many “physical” kernels
– Even better is known to be possible



Example: Poisson Kernel

Example: Poisson Kernel
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Approximation of Poisson Kernel
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-12

-10

-8

-6

-4

-2

Error (log10 -scale) of approximating the Poisson kernel from 

[1e-9, 1] with M=89 terms.



Low Separation Rank Approximation, Poisson Example

B-C-F-H, Acha, 2007



Automatically generated 
representations of
exp(-30r)/r accurate to 
1e-10, 1e-8, 1e-6, 1e-4, 1e- 
2 (relative error) for r in 
[1e-8,1] (92, 74, 57, 39 
and 21 terms, 
respectively).  

Low-energy scattering 
states also possible (but 
stronger dependence on 
range)



Summary of Computational Setup

Formulate using integral equation, e.g. Lippman-
Schwinger Equation
Use multiresolution analysis and low separation rank 
approximation
– E.g.: representation by multiwavelets and separated 

representations using Gaussians
Solve using iterative methods or combination of direct 
and iterative methods
Discontinuous spectral element with multi-resolution 
and separated representations for fast computation 
with guaranteed precision
Now relax the tree structure—map tree to hash table



Download, FAQ and wiki
http://code.google.com/p/m-a-d-n-e-s-s/
--will require mpicc, mpicxx, mpif90,.., lapack, blas, gfortran
Example code in m-a-d-n-e-s-s/src/apps/examples

http://code.google.com/p/m-a-d-n-e-s-s/


The funding

The development of MADNESS is funded by the U.S. Department of Energy, 
Office of Advanced Scientific Computing Research (OASCR) and the division of 
Basic Energy Science, Office of Science, under contract DE-AC05-00OR22725 
with Oak Ridge National Laboratory, by the Math Base program (PI: Fann), 
SciDAC SAP in computational chemistry (PI: Fann) and SciDAC BES 
(PI:Harrison) and IAA Algorithm’s Project (PI: Geist).
The application of MADNESS-NDFT to nuclear physics is funded through 
SciDAC UNEDF (PIs: R. Lusk and W. Nazarewicz) by DOE-OASCR.
This research was performed in part using 
– resources of the National  Energy Scientific Computing Center which is 

supported by the Office of Energy Research of the U.S. Department of  
Energy under contract DE-AC03-76SF0098, 

– the National Center for Computational Sciences at Oak Ridge National 
Laboratory under contract DE-AC05-00OR22725 . 
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