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1. The SPC would appreciate to receive a more detailed 
breakdown of the resources required to address the various 
questions you raise in the proposal. In particular, the SPC 
wonders what resources are still needed to complete the Nf=12 
calculations and what is needed to do the Nf=16 and 20 
analysis.

2. It would be very helpful to receive information on the 
typical number of trajectories you need to generate to obtain 
the data you have shown in the proposal.



Probing technicolor theories with staggered fermions Kieran Holland

Figure 1: The conformal window for SU(N) gauge theories with Nf techniquarks in various representations,

from [3]. The shaded regions are the windows, for fundamental (gray), 2-index antisymmetric (blue), 2-index

symmetric (red) and adjoint (green) representations.

1. Introduction

The LHC will probe the mechanism of electroweak symmetry breaking. A very attractive

alternative to the standard Higgs mechanism, with fundamental scalars, involves new strongly-

interacting gauge theories, known as technicolor [1, 2]. Such models avoid difficulties of theories

with scalars, such as triviality and fine-tuning. Chiral symmetry must be spontaneously broken in

a technicolor theory, to provide the technipions which generate the W± and Z masses and break

electroweak symmetry. Although this duplication of QCD is appealing, precise electroweak mea-

surements have made it difficult to find a viable candidate theory. It is also necessary to enlarge the

theory (extended technicolor) to generate quark masses, without generating large flavor-changing

neutral currents, which is challenging.

Technicolor theories have lately enjoyed a resurgence, due to the exploration of various tech-

niquark representations [3]. Feasible candidates have fewer new flavors, reducing tension with

electroweak constraints. If a theory is almost conformal, it is possible this generates additional

energy scales, which could help in building the extended technicolor sector. There are estimates

of which theories are conformal for various representations, shown in Fig. 1. For SU(N) gauge

theory, if the number of techniquark flavors is less than some critical number, conformal and chiral

symmetries are broken and the theory is QCD-like. For future model-building, it is crucial to go be-

yond these estimates and determine precisely where the conformal windows are. There have been

a number of recent lattice simulations of technicolor theories, attempting to locate the conformal

windows for various representations [4, 5, 6, 7, 8].

2. Dirac eigenvalues and chiral symmetry

The connection between the eigenvalues ! of the Dirac operator and chiral symmetry breaking
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conformal window of fundamental rep

conformal window: 2-index 
symmetric rep (sextet)

Banks-Zaks Fixed Point
of fundamental rep

BZ FP of sextet rep

fundamental and sextet rep 
projects with Nc=3 colors 

fundamental rep projects 
running: Nf=8,10,12,14,16,20
dynamical staggered stout 
fermions

sextet rep projects running: 
Nf=2,3 dynamical staggered 
stout fermions

Theory space 
predictions from 
unreliable Schwinger-
Dyson approximations

USQCD resources this year: 
9M J/Psi core hours 
(Far less than needed for the 
results presented here, or 
used on USQCD clusters)

New request: 13.9M J/Psi 
core hours and 0.6M GPU hrs



summary web page: http://www.physics.ucsd.edu/~nogradi/usqcd/
USQCD supported published results last year: 
1.  Topology and higher dimensional representations.
          Published in JHEP 0908:084,2009. 
          e-Print: arXiv:0905.3586 [hep-lat]

2.  Nearly conformal gauge theories in finite volume.
           Phys.Lett.B681:353-361,2009. 
           e-Print: arXiv:0907.4562 [hep-lat]

3.  Chiral properties of SU(3) sextet fermions
           e-Print: arXiv:0908.2466 [hep-lat]

4.  Chiral  symmetry breaking in nearly conformal gauge theories
           e-Print: arXiv:0911.2463 [hep-lat]  posted 

5.  Calculating the running coupling in strong electroweak models          
           e-Print: arXiv:0911.2934 [hep-lat] 
           

I will also discuss unpublished new analysis

http://www.physics.ucsd.edu/~nogradi/usqcd/
http://www.physics.ucsd.edu/~nogradi/usqcd/


Nf=12 chiral symmetry breaking pattern and running 
coupling require continued investigations



Nf=12 NLO chiral analysis in p-regime:
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Similar pattern to Nf=9 case!
All features exhibit chiral symmetry breaking
Columbia group’s results consistent with this
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fundamental SU(3) color representation using finite volume

analysis. The staggered fermions are deployed with a special

6-step exponential (stout) smearing procedure [47] in the lattice

action to reduce well-known cutoff effects with taste breaking

in the Goldstone spectrum. The presence of taste breaking re-

quires a brief explanation of how staggered chiral perturbation

theory is applied in our analysis. The important work of Lee,

Sharpe, Aubin and Bernard [48–50] is closely followed in the

discussion.

2.1. Staggered chiral perturbation theory

Starting with the Nf = 4 example [48], the spontaneous

breakdown of S U(4)L × S U(4)R to vector S U(4) gives rise to

15 Goldstone modes, described by fields φi. These can be orga-

nized into an S U(4) matrix

Σ(x) = exp

�
i
φ√
2F

�
, φ =

15�

a=1

φaTa , (1)

where F is the Goldstone decay constant in the chiral limit and

the normalization Ta =
�
ξµ, iξµ5, iξµν, ξ5

�
is used for the flavor

generators. The leading order chiral Lagrangian is given by

L(4)

χ =
F

2

4
Tr(∂µΣ∂µΣ†) −

1

2
B mq F

2Tr(Σ +Σ †) , (2)

with the fundamental parameters F and B measured on the tech-

nicolor scale ΛTC which replaced ΛQCD in the new theory. Ex-

panding the chiral Lagrangian in powers of φ one finds 15 de-

generate pions with masses given by

M
2

π = 2Bmq

�
1 + O(mq/ΛTC)

�
. (3)

The leading order term is the tree-level result, while the cor-

rections come from loop diagrams and from higher order terms

in the chiral Lagrangian. The addition of a
2L(6)

χ breaks chiral

symmetry and lifts the degeneracy of the Goldstone pions. Cor-

rection terms are added to Eq. (3) which becomes

M
2

π = C(Ta) ·a2Λ4

TC
+2Bmq

�
1 + O(mq/ΛTC) + O(a

2Λ2

TC
)

�
(4)

where the representation dependent C(Ta) is a constant of order

unity. Contributions proportional to a
2

are due to L(6)

χ , and lead

to massive Goldstone pions even in the mq → 0 chiral limit.

The only exception is the pion with flavor ξ5 which remains

massless because the U(1)A symmetry is protected.

Lee and Sharpe observe that the part of L(6)

χ without deriva-

tives, defining the potentialV(6)

χ , is invariant under flavor S O(4)

transformations and gives rise to the a
2

term in M
2

π. Terms in

L(6)

χ involving derivatives break S O(4) further down to the lat-

tice symmetry group and give rise to non-leading terms propor-

tional to a
2
m and a

4
. The taste breaking potential is given by

−V(6)

χ = C1Tr(ξ5Σξ5Σ†)

+C2

1

2

�
Tr(Σ2

) − Tr(ξ5Σξ5Σ) + h.c.
�

+C3

1

2

�

ν

�
Tr(ξνΣξνΣ) + h.c.

�

+C4

1

2

�

ν

�
Tr(ξν5Σξ5νΣ) + h.c.

�

+C5

1

2

�

ν

�
Tr(ξνΣξνΣ†) − Tr(ξν5Σξ5νΣ†)

�

+C6

�

µ<ν

Tr(ξµνΣξνµΣ†) . (5)

The six unknown coefficients Ci are all of size Λ6

TC
.

In the continuum, the pions form a 15-plet of flavor S U(4),

and are degenerate. On the lattice, states are classified by the

symmetries of the transfer matrix and the Goldstone pions fall

into 7 irreducible representations: four 3-dimensional represen-

tations with flavors ξi, ξi5, ξi j and ξi4, and three 1-dimensional

representations with flavors ξ4, ξ45 and ξ5.

Close to both the chiral and continuum limits, the pion

masses are given by

Mπ(Ta)
2 = 2Bmq + a

2∆(Ta) + O(a
2
mq) + O(a

4
) , (6)

with ∆(Ta) ∼ Λ4

TC
arising fromV(6)

χ . SinceV(6)

χ respects flavor

S O(4), the 15 Goldstone pions fall into S O(4) representations:

∆(ξ5) = 0 , (7)

∆(ξµ) =
8

F2
(C1 +C2 +C3 + 3C4 +C5 + 3C6) , (8)

∆(ξµ5) =
8

F2
(C1 +C2 + 3C3 +C4 −C5 + 3C6) , (9)

∆(ξµν) =
8

F2
(2C3 + 2C4 + 4C6) . (10)

In the chiral limit at finite lattice spacing the lattice irreducible

representations with flavors ξi and ξ4 are degenerate, those with

flavors ξi5 and ξ45, and those with flavors ξi j and ξi4 are degen-

erate as well. No predictions can be made for the ordering or

splittings of the mass shifts. We also cannot predict the sign

of the shifts, although our simulations indicate that they are

all positive with the exponentially smeared staggered action we

use. This makes the existence of an Aoki phase [48] unlikely.

The method of [48] has been generalized in a nontrivial way

to the Nf > 4 case [49, 50] which we adopted in our calcula-

tions with help from Bernard and Sharpe. The procedure cannot

be reviewed here but it will be used in the interpretation of our

Nf = 8 simulations.

2.2. Finite volume analysis in the p-regime

Three different regimes can be selected in simulations to

identify the chirally broken phase from finite volume spectra

and correlators. For a lattice size L
3

s
× Lt in euclidean space and

in the limit Lt � Ls, the conditions FπLs > 1 and MπLs > 1

select the the p-regime, in analogy with low momentum count-

ing [51, 52].
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But Nf=12 is quite similar to Nf=9 NLO chiral analysis in p-regime:
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Further hints for chiral symmetry breaking: running 
coupling (?) and A1-Rho splitting (?)



We use Wilson loop ratios, V(r) potential, and F(r) force to get the 
running coupling g(R) in several schemes     Looks promising 
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Fig. 3. (a) The renormalized coupling g2(L, β) at fixed bare coupling for Nf = 16 fundamental
flavors. For g2(L, β) > 0.5 the coupling decreases with increasing L, for g2(L, β) < 0.5 the coupling
is independent of L within the errors. This is consistent with the existence of an infrared fixed
point. (b) The quark-antiquark potential V (R) for Nf = 12 fundamental flavors measured in a
323

× 64 lattice at β = 2.2 and m = 0.015. The data indicate QCD-like behavior.

Creutz ratio. Step-scaling of the finite volume ratios can be used in exactly the same
way as for the simulations results, to determine the RG flow in the continuum. The
analytic RG flow starts at the reference point g2(Lphys,0) = 0.825. At weak coupling
there is complete agreement with 2-loop perturbation theory. We connect lattice
perturbation theory to the simulation results by matching the flows at g2(Lphys) =
1.44, where the simulation RG flow begins. There is continued agreement with 2-
loop perturbation theory at even stronger coupling, only at the strongest coupling
do we see deviation from the perturbative flow.

3. Fundamental fermions

We have begun studies of SU(3) gauge theory with fermions in the fundamental
representation. For Nf = 16 flavors, 2-loop perturbation theory predicts the theory
is conformal with an infrared fixed point g∗2 ≈ 0.5. At such weak coupling, this
perturbative result is quite trustworthy. Because of the computational expense of
step-scaling with dynamical fermions, we have not performed a continuum extrapo-
lation. Hence the running coupling is contaminated with cutoff effects. If the linear
lattice size L is large enough, the trend from the volume dependence of g2(L, β)
should indicate the location of the fixed point. For g2(L, β) > g∗2 we expect de-
crease in the running coupling as L grows, although the cutoff of the flow cannot
be removed above the fixed point. Below the fixed point with g2(L, β) < g∗2 we
expect the running coupling to grow as L increases and the continuum limit of the
flow could be determined. The first results are shown in Fig. 3(a). We use stout-
smeared61 staggered fermions62,63 and the RHMC algorithm, simulating at quark
mass mq = 0.01, with some runs at mq = 0.001 to test that the mass dependence
is negligible. For the Wilson loop ratios, we smear the gauge fields and measure
the fat-link Wilson operator. Our experience in the pure gauge theory test is cutoff
effects are not reduced using finite-L values of k, hence we use the infinite-volume k

Nf=16 Creutz coupling running

g*^2 ~ 0.5

Our running coupling methods (important to have 3 methods)
SF, MCRG, Wilson loops (including        , V(R), F(R))

Not Coulomb-like

We are running with R, or with L when R/L fixed (different schemes)

αW (R)



46 Chapter 2 The static quark potential

the V scheme with the central value eq. (2.36), one observes that at r = 0.3rc one
has αV(2loop) ! 0.28, αV(3loop) ! 0.9. This means that one is already at those
small distances outside the region where perturbation theory can be trusted. The
long-dashed line in Fig. 2.12 represents eq. (2.16) with the 2-loop RG solution for
αV; we decided not to use the 3-loop prediction due to the fact that the coupling is
very large at the distance r ∼ 0.15r0. As it was to be expected due to the missing
stability of this perturbative expression, it fails in describing the non-perturbative
potential.
A similarly bad perturbative expression is the direct expansion of the potential in
terms of αMS; for this comparison we used the matching equation eq. (2.25), with
S ′ = V , S = MS. For the same reason explained before, we decided to use the
2-loop RG prediction for αMS. The dotted line corresponds to the choice s = 1 in
eq. (2.25), while the dashed-dotted line corresponds to s = s0 (eq. (2.33)).

Figure 2.11: Test of eq. (2.25). The uncertainty in the combination µr0 has been
translated into an uncertainty for h(αSF(µ/s0)) and αqq(µ). The non-perturbative
values for αSF(µ) are constructed from the data of [15]. Errors are smaller than the
size of the symbols.

In summary, care has to be taken which perturbative scheme is adopted to de-
scribe the potential. However, perturbation theory does its best in the following
sense. As usual in an asymptotic expansion, one should first investigate the appar-
ent ”convergence” by comparing subsequent orders and checking that they decrease
significantly. If this is not the case, one is obviously outside the domain of applica-
bility of perturbation theory or has chosen a bad truncation (scheme). According
to this criterion the β-function in the qq-scheme may be trusted up to αqq ≈ 0.3.
Other truncations of perturbation theory for the potential are applicable for much
smaller values of the coupling only; for example, a scheme with a large 3-loop coef-
ficient such as V is of no use in the region α > 0.15. Therefore, perturbation theory

Running coupling from force and SF running 
nicely match for Nf=0 and Nf=2

We have difficulties to match data from the 
Force/Creutz running coupling and the Yale 

SF running at Nf=12 in the relevant 
coupling range

Will requires further careful studies

Necco/Sommer

αW (R)
Interesting collection of 
renormalized running couplingsVery difficult to resolve fixed point from walking
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Nf=12  mq=0.015, 0.02  
rho-A1 splitting
pulled out from single correlator
with two parity partners
Approximately 3,000 thermalized 
trajectories of unit length (bare 
minimum we should always have)

Nf=12  mq=0.01 benchmark
32^3x64 with 3K trajectories:
~ 300K 9q core hours

20 Gflops on 9q nodes in eight cores

approximately scales to 48^3x96 
(3K trajectories):
~ 1.5 M 9q core hours



Nf=12  
For test of chiral symmetry breaking and chiral limit extrapolations: We 
propose to add one run at beta=2.2 with mq=0.01 on 48^3x96 lattice 
generating 3K trajectories
cost: 3M J/Psi core hours
This lattice would match our existing Ls=24^36 runs and the 32^3x64 
runs for several tests of the running coupling

Total Nf=12 budget: 7.2M J/Psi core hours

For scaling tests: We propose to add two runs at beta=2.0 with mq=0.01, 
mq=0.015 and one run at beta=2.4 with mq=0.02 on 32^3x64 lattices with 
3K trajectories
cost: 1.8M J/Psi core hours

For test of SF Yale results of running coupling: We plan to run KS 
fermions at mq=0.001 at four beta values on 32^3x64 lattices
cost: 2.4M J/Psi core hours     The largest lattice size dominates



Nf=16  
Femto physics with tunneling vacua is relevant (and probably dominant): 
We would like to run at three beta values with mq=0.001 on 24^3x128 
lattices generating 3K trajectories for the conformal energy spectra ~1/L
cost: 1.3M J/Psi core hours

Total Nf=16,20 budget: 2.6M J/Psi core hours

Nf=20  
Femto physics with tunneling vacua is relevant (and probably dominant): 
We would like to run at three beta values with mq=0.001 on 24^3x128 
lattices generating 3K trajectories for the trivial energy spectra ~1/L
cost: 1.3M J/Psi core hours



Sextet representation with Nf=2  
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Budget of sextet project with Nf=2,3:

For test of Nf=2 chiral symmetry breaking and chiral limit extrapolations: 
We propose to run at beta=3.2,3.4,3.6 with mq=0.01,0.02,0.03 on 
32^3x64 lattices generating 3K trajectories each
cost: 5.4M J/Psi core hours
This lattice would match our existing Ls=16^32 runs 

Several tests of the running coupling are needed in the sextet model:
propose to run at beta=3.2,3.4,3.6,4.0,4.5 with mq=0.001 up to 32^3x64 
lattices generating 3K trajectories each
cost: 3M J/Psi core hours + 3M J/Psi core hours for the Nf=3 runs inside 
the conformal window

 

Total Nf=2,3 sextet budget: 11.4M J/Psi core hours



Cluster budget of all plans: 21.2 M J/Psi core hours
almost factor 2 more than what we asked for in proposal 
cluster time and still underestimates needs for what we are 
planning to do (for example, critical slowdown at mq=0.001 for chiral 
runs always turns out worse then benchmarks indicate before 
thermalization)

Hope to make up for all the “misunderestimations” with 
GPU computing



3. The SPC also wonders what makes it necessary to 
split calculations with fermions in the fundamental 
representation into a portion that is done on GPUs and 
another portion that is done on clusters.

4. We are also interested in your experience with 
running on, and coding for, the GPU cluster.



GPU Hardware

Tesla 1060

Flops: single 1 Tflop, double 80 Gflops

Memory 4GB, Bandwidth 102 GBs-1

230 Watts, $1200

Tesla 1070

Flops: single 4 Tflops, double 320 Gflops

Memory 16GB, Bandwidth 408 GBs-1

900 Watts, $8000

GTX 280

Flops: single 1 Tflop, double 80 Gflops

Memory 1GB, Bandwidth 141 GBs-1

230 Watts, $350

Wednesday, February 25, 2009

We are supported by the Wuppertal hardware/software infrastructure
We built on Wuppertal 
software library:
Fodor, Szabo, Katz

CUDA code:
Kalman Szabo
Sandor Katz
Chris Schroeder
Daniel Nogradi

For code development: 
Small UCSD Tesla cluster 
ARRA funded by DOE 
waiting for Fermi cards 

Very limited use of Wuppertal hardware
We are USQCD !!

Our new DYNQCD software 
mostly by Szabo, Nogradi, 
Schroeder



Nf=12  mq=0.01 benchmark comparison between GPU and CPU
32^3x64 with 3K trajectories:
~ 300K 9q core hours
~ 15 K GTX 285 hours
~ 20 Gflops on 9q nodes
approximately scales to 48^3x96 
(3K trajectories):
~ 1.5 M 9q core hours
~  75 K GTX 285 hours

However, benchmarks are not full RHMC code comparisons

CPU is used in double precision sums and error checking and a few other 
parts of the RHMC code

Full code is going to move gradually into the new Fermi GPU cards which 
have error checking and high speed double precision



Writing GPU CUDA code is challenging (fighting Amdahl’s law ?)
(production workflow is quite different: many Gflops but slow 
configuration generation on single GPU to sit out thermalization before 
you stream on GPU farm)

Staggered stout in fundamental rep runs on GPU 
sextet rep staggered code is only running in CPU 

Operationally the JLAB GPU cluster set up is great

Fermi cards with error correction and fast double precision may be 
game changers

Early Fermi benchmark tests at JLAB are complicated and somewhat 
tentative

Going parallel within node (4 GPU) or across nodes challenging



5. The SPC would like to receive a statement of your 
group regarding the common data and source code 
sharing policy of USQCD.

All lattice configurations we generate are available to 
USQCD including the ones we generated in Wuppertal!

All software we develop from USQCD sources is shared.
Wuppertal based software has to be discussed with 
original non-USQCD developers.


